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Abstract �Strong semantic segmentation models require large backbones to achieve promising performance, making it hard to adapt
to real applications where effective real-time algorithms are needed. Knowledge distillation tackles this issue by letting the smaller
model (student) produce similar pixel-wise predictions to that of a larger model (teacher). However, the classi�er, which can be deemed
as the perspective by which models perceive the encoded features for yielding observations (i.e., predictions), is shared by all training
samples, �tting a universal feature distribution. Since good generalization to the entire distribution may bring the inferior speci�cation to
individual samples with a certain capacity, the shared universal perspective often overlooks details existing in each sample, causing
degradation of knowledge distillation. In this paper, we propose Adaptive Perspective Distillation (APD) that creates an adaptive local
perspective for each individual training sample. It extracts detailed contextual information from each training sample speci�cally, mining
more details from the teacher and thus achieving better knowledge distillation results on the student. APD has no structural constraints
to both teacher and student models, thus generalizing well to different semantic segmentation models. Extensive experiments on
Cityscapes, ADE20K, and PASCAL-Context manifest the effectiveness of our proposed APD. Besides, APD can yield favorable
performance gain to the models in both object detection and instance segmentation without bells and whistles.

Index Terms �Scene Understanding, Semantic Segmentation, Knowledge Distillation.
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1 INTRODUCTION

Deep learning has signi�cantly boosted the performance of se-
mantic segmentation. Powerful segmentation models [3], [54]
require strong feature extractors [9], [36], [41] to reach high
performance. While real-time algorithms are more preferred in
practice. Designing ef�cient segmentation models [53], [21], [44]
is thus important.

Compared to hand-crafted ef�cient model design, knowledge
distillation (KD) [12] is a more general technique for achieving
high ef�ciency since KD can be applied to any existing models
without structural constraints. Speci�cally, �knowledge� is dis-
tilled from a large model (teacher) to a smaller one (student)
by minimizing the Kullback-Leibler divergence (KLD) between
student output and soft target yielded by the teacher.

KD has been shown effective in classi�cation [12], [28], [34],
[42], while in segmentation, models are required to maintain the
encoded features in certain resolutions and accomplish pixel-
wise labeling by up-sampling to the original size. Contextual
information is essential in segmentation because models cannot
make predictions merely based on the RGB value of every single
pixel. Design for contextual information enrichment (i.e., global
pooling [19], pyramid pooling [54], dilated convolution [4] and
attention [38]) can signi�cantly improve the baselines. Previous
methods [20], [39] propose distillation schemes to extract and
transfer structured information on features, while it is notable that
one important factor �perspective� in semantic segmentation is
seldom studied.
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Fig. 1: Deep semantic segmentation framework is abstracted
as the process that the �nal pixel-wise observation (prediction)
is obtained from the perspective (classi�er) based on encoded
features produced by the deep neural networks.

Perspective works by representing the light that passes from
a scene through a plane to the viewer’s eye. In fact,deep models
perceive the encoded semantic features and make �nal predictions
from the essential “perspective”. We can consider the �nal clas-
si�er as a form of perspective for a model. Put differently, the
inference of a segmentation model can be deemed as a process
that the perspective (classi�er) projects the encoded high-level
semantic information to yield observations (predictions) for the
viewer, as illustrated in Fig. 1. Compared to the student, the
teacher usually has a better perspective because of the large feature
encoder that can produce high-quality features to learn a good
perspective, providing more accurate observations (predictions)
used as soft targets in normal KD loss [12].

During KD, the teacher’s feature encoder and perspective are
�xed. Both of them generally �t the universal distribution given
that they have been suf�ciently trained on the entire training set.
The �xed �universal perspective� of teacher achieves high-quality
evaluation results by generalizing to all testing samples. However,
the soft targets exploited with such a good generalization might not
be the optimal choice for transferring knowledge from the teacher
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Fig. 2: Qualitative t-SNE [35] results of the difference between the �xed universal perspective (top) and adaptive perspective (bottom).
Categories are represented by different colors. Top �gures show that generally correct observations can be obtained by the �xed universal
perspective, while the lack of speci�cation to individual samples causes erroneous observations/knowledge for distillation. On the other
hand, with our proposed APD, models learn to form adaptive perspectives that are clearer decision boundaries as demonstrated in the
bottom �gures where the adaptive perspective, conditioned on the content of each image, decently describes the feature distribution.
Therefore, APD reveals additional detailed co-occurring semantic cues conditioned on individual training samples so as to better
accomplish the knowledge distillation.

to student, because, with a certain capacity, high generalization
might cause poor speci�cation that can reveal more useful infor-
mation of the encoded features for decent knowledge distillation.
To maintain good speci�cation, the feature maps of different
training samples should be projected by different perspectives to
yield predictions, because even the same object may occur with
varying co-occurrence information in different training samples,
and a �xed universal perspective might not be able to well handle
all the individual cases.

To address this key issue, we propose a new knowledge
distillation method based on the concept of perspective for se-
mantic segmentation. Our method enables models to form the
adaptive perspective for every input image, i.e., different images
are processed by different perspectives, based on their contextual
contents. As illustrated in Figures2 and3, the adaptive perspective
is generated for each image and it can better describe the en-
coded feature distribution, which reveals more contextual details
that are conducive to knowledge distillation. As teacher always
learns a better universal perspective, we also align the adaptive
perspectives of teacher and student. It makes the student learn
to form better adaptive perspectives under the teacher’s guidance.
Besides, the auxiliary observations (predictions) are obtained from
the adaptive perspectives of the teacher and student. They are
then used for distillation from the adaptive perspectives, further
boosting performance.

We name our method Adaptive Perspective Distillation (APD)
since it offers an adaptive perspective to reveal more contextual
cues for semantic segmentation. Our method is effective in boost-
ing different models on various benchmark datasets, achieving
advanced performance compared with state-of-the-art algorithms.

Fig. 3: Training mIoU curves of the auxiliary predictionpa;s and
the main predictionps of the student model on PASCAL-Context.
pa;s andps are obtained from the adaptive perspective and �xed
universal perspective respectively. The auxiliary predictionpa;s
achieves much higher mIoU on the training set becausepa;s
is generated by the adaptive perspectiveA s that is with high
speci�cation to each image, mining more details for knowledge
distillation and forming better decision boundaries as depicted by
the bottom examples in Fig. 2. The comparison on the validation
set is presented in Fig. 5.

Note only two light-weight projectors are introduced for knowl-
edge distillation, and, after training, they are simply discarded
without causing any structural modi�cation to the original model
during evaluation, manifesting the substantial practical merit. In
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summary, our contribution is threefold.
� Different from the common practice in KD, we exam indi-

vidual images and generate adaptive perspectives and obser-
vations to improve knowledge distillation.

� The proposed APD is model-agnostic and achieves great
success by signi�cantly improving different semantic seg-
mentation models on popular datasets without structural
constraints.

� Our method is also effective for knowledge distillation on the
tasks of object detection and instance segmentation, further
demonstrating the generalization ability.

2 RELATED WORK

Semantic segmentation. Semantic segmentation is a fundamen-
tal and challenging task that requires accurate pixel-wise predic-
tions for each image. FCN [31] is the �rst to adopt the convolution
layers instead of the fully-connected layer to accomplish the
semantic segmentation task. Encoder-decoder is developed [23],
[1], [29] to let the encoded latent features re�ned by the decoder
in steps. Dilated convolution [3], [46] enlarges the receptive �eld
that is important for per-pixel predictions based on the contextual
information. Pooling is another way for providing more contextual
cues, such as global pooling [19], pyramid pooling [3], [54], [43],
and strip pooling [13]. Note attention mechanism further boosts
the performance by leveraging the long-range relationship across
features [48], [55], [50], [7], [14], [17], [8], [47].

Recently, in order to perform pixel-wise semantic segmenta-
tion in real-time on mobile devices, ef�cient segmentation models
are developed [26], [21], [53], [45]. E-Net [26] incorporates early
down-sampling, �lter factorization, and pooling in parallel with
strided convolution to reduce the computation overhead without
compromising accuracy. ESPNet [21] builds the ef�cient spatial
pyramid (ESP) module with factorized convolutions to accelerate
the model. ICNet [53] leverages the multi-resolution branches
with label guidance to accomplish real-time inference effectively.
BiSeNet [45] proposes the spatial- and context-path to obtain
suf�cient contextual cues ef�ciently.

Knowledge distillation. Knowledge distillation was proposed
by Hinton in [12]. It supervises a compact model by a larger
pre-trained teacher in classi�cation. The teacher provides soft
labels, which contain useful �dark knowledge� for the student.
The student could learn better results from the soft labels. Later,
FitNet [28] distills knowledge from the features instead of the �nal
prediction, which opened a new door in knowledge distillation.
Following work [49], [25], [11] studied how to extract useful
information from the features to better transfer to the student.

The study of knowledge distillation in semantic segmentation
tasks commences in recent years. SKD [20] extracts structured
information from the features. It also leverages a GAN network on
top of the prediction of teacher and student to distill the holistic
knowledge. Similar to SKD, the structural knowledge is also used
in KA [10] by distilling the spatial correlation from the element-
to-element similarity matrix, but differently, KA optimizes the
feature similarity in a transferred latent domain formulated by
an auto-encoder, instead of the original features used by SKD, to
alleviate the issues brought by the inconsistency between teacher
and the student. After that, IFVD [39] extracts the intra-class
feature variation on the features. SKD replaces the transformation
in SKD with an IFV transformation. Besides, CSCACE [24]

makes use of both channel and spatial correlation (CSC) with
an adaptive cross-entropy (ACE) loss that tries to combine the
merits of the ground truth labels and predictions of the teacher
network. More recently, [15] applies domain adaptive distillation
to tackle the unsupervised domain adaptation problem and yields
decent improvement. However, the study of knowledge distillation
in semantic segmentation is still far from satisfactory.

Alternatively, in this paper, we analyze the knowledge dis-
tillation problem from a new view, and propose the Adaptive
Perspective Distillation that achieves advanced performance on
different baselines and datasets.

3 PRELIMINARY - KNOWLEDGE DISTILLATION

Large models always achieve better performance than the small
ones because of the large capacity. As suggested by Hintonet
al. [12], knowledge of a large model (teacher) can be transferred to
the smaller one (students) via soft labels that are more informative
than the one-hot hard labels. This process is called knowledge
distillation (KD). By mimicking the soft labels predicted by the
teacher, the student gradually obtains the �dark knowledge� con-
tained in the teacher model, such as correlation between different
entities, which is conducive to the representation learning and
cannot be expressed by the hard labels.

Liu et al. [20] apply KD to semantic segmentation where the
Kullback-Leibler divergence (KLD) is calculated in a pixel-wise
manner. Formally, letH andW denote the height and width of the
prediction, and the knowledge distillation lossL kd is the average
KLD of all pixels as

L kd =
1

H � W

H �WX

x=1

KLD (px
s jjp x

t ); (1)

wherex is the pixel index, thuspx
t and px

s represent the class
probabilities ofx-th pixel predicted by teacher and student models
respectively.

It is worth noting that, normally, the teacher model is �xed
during training to provide consistent soft targetspx

t to student,
and L kd is used as an auxiliary loss that is optimized together
with the main lossL ce produced bypx

s and one-hot hard labels.
Therefore, the overall training objectiveL is

L = L ce + � kd L kd ; (2)

where� kd is set to 10 following [20], [39].

4 ADAPTIVE PERSPECTIVE DISTILLATION

Overview. All semantic segmentation models can be decom-
posed into two components: 1) feature generatorGand 2) classi�er
C. BothGandCare �xed in the teacher model during distillation.
Teacher’s classi�erCt takes the featuresf t extracted fromGt and
produces soft targets forL kd . However,Ct �ts the entire training
set, and thus it provides a �xed universal perspective for mining
knowledge from each feature map extracted byGt of the teacher.

To further investigate the �dark knowledge� inside the teacher,
we take a closer look at each training sample by forming individual
adaptive perspectivesA t that are composed of semantic anchors
(i.e., representative vectors for individual semantic classes) ob-
tained from the encoded featuresf t , which serves as another
auxiliary task providing local perspectives for distilling knowl-
edge. Auxiliary observationspa;t are then generated by adaptive
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Fig. 4: Illustration of our method. The input image is �rst processed by teacher and student encoders (Gt andGs) respectively to get the
encoded feature mapsf t andf s. To accomplish normal KD,L kd [12] is applied to the predictions obtained from the main classi�ers
C t andC s, offering a global perspective.f t andf s are also transformed by projectors (Pt andPs) to form adaptive classi�ersA t and
A s, serving as local perspectives that reveal useful details by better describing the feature distributions as shown in Fig. 2 and Fig. 3. We
note that the projected featuresf a;t andf a;s arel-2 normalized. Then, the distillation from the adaptive perspectives is accomplished
by the proposedL rec andL ob that recti�es adaptive classi�ers and aligns auxiliary predictions (pa;t andpa;s ) respectively.L t only
updates teacher's projectorPt , and the gradients yielded byL kd , L rec andL ob will not be back-propagated topt , A t andpa;t . The
normal cross entropy lossL ce applied tops is omitted in this �gure for simplicity.

perspectivesA t and encoded featuresf t for transferring the
knowledge from teacher to student. The student feature generator
Gs is required to mimicGt to yield similar adaptive perspectives
A s, as well as the auxiliary observationspa;s obtained fromA s.
Since both the adaptive perspective and auxiliary observations are
generated speci�cally for each training sample, they provide more
informative cues for KD. Our method is abstracted in Fig. 4.

Adaptive perspective. In the following, we introduce the way
to generate adaptive perspectives to better distill the knowledge
between the teacher and student models. First, two light-weight
projectors, i.e., two 2-layer Multi-layer Perceptrons (MLPs) with
an intermediate ReLU activation layer, are used to produce the
adapted features for constructing new perspectives with the same
channel numbers, making our method model-agnostic because the
teacher and student models usually have different output channels.
We can formalize this procedure as

f a;t = Pt (f t ); f a;s = Ps(f s): (3)

Masked average pooling (MAP) is then applied tof a;t and
f a;s to generate theC-dimensional semantic anchorsA i

t and
A i

s 2 R [1� C ](i 2 f 1; :::; N g) as shown in Eq. (4), where
M i 2 R [H � W � 1] is the binary mask obtained from the ground
truth label, indicating whether the features belong to classci , and
x denotes the feature position.N represents the number of classes
contained in the current image, and different images may have
different values ofN . For simplicity, we only discuss the case
with one single image.

A i
t =

P HW
x =1 f x

a;t � M x
i

P HW
x =1 M x

i

; A i
s =

P HW
x =1 f x

a;s � M x
i

P HW
x =1 M x

i

: (4)

We name the collection of these features, i.e., semantic an-
chors, as “adaptive perspective” because they are then put together
to form a classi�er whose semantic information varies on different

images, i.e., being “adaptive” to different contexts, for yield-
ing auxiliary predictions during distillation. With the semantic
information provided by the ground-truth labels, the adaptive
perspective can better describe the encoded semantic intra- and
inter-class distributions, as shown in Figs. 2 and 3 where more
accurate predictions can be obtained from the adaptive perspective.
Thus, though it cannot be used for the �nal prediction due to the
use of the ground-truth label, it is suitable to distill knowledge
between the student and teacher with deeper insight, i.e., how the
model interprets the encoded features for different images. Note
it is normal to add extra modules during distillation in literature.
The proposed two projectors are not used during inference, so the
model ef�ciency is not adversely affected.

After we get the adaptive perspectives, additional explicit
observations can be obtained by calculating the cosine similar-
ity between the adapted features (f a;t and f a;s ) and adaptive
perspectives (A t and A s) as Eqs. (5)-(6) wherex is the pixel
index, i and j are the indexes amongN adaptive perspectives.
Therefore,px;i

a;t and px;i
a;s tell how likely the x-th pixels belong

to the correspondingi -th semantic anchors of teacher and student
respectively.

px;i
a;t =

exp(cos(f x
a;t ; A i

t )=� )
P N

j =1 exp(cos(f x
a;t ; A j

t )=� )
; (5)

px;i
a;s =

exp(cos(f x
a;s ; A i

s)=� )
P N

j =1 exp(cos(f x
a;s ; A j

s)=� )
: (6)

A new hyper-parameter� is introduced for yielding predic-
tions via cosine similarity because the value of cosine similarity
ranges from -1 to 1 thus the results of the Softmax operation
performed in Eqs. (5)-(6) are constrained within a rather small
scale.� is adopted to enlarge the output scale for facilitating the
optimization performed with Eqs. (5)-(6), and we empirically set
� to 0.1 in all experiments.
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Learning objective for teacher's adaptive perspective.
Teacher’s projectorPt is randomly initialized by the default
setting of PyTorch, thus it will collapse with meaningless inter-
pretation without optimization. To ensure thatPt can provide
representative perspectivesA t 2 R [N �C ] that reveal more
contextual details for each image, an explicit regularization is
indispensable � features belonging to classci should get closer to
A i

t and are far from the semantic anchors of the other co-occurring
categories. Therefore, we introduce the learning objective for
teacher’s projectorPt as

L t =
1

H � W

H �WX

x=1

� log
exp(cos(f x

a;t ; A c(x)
t )=� )

P N
i=1 exp(cos(f x

a;t ; A i
t )=� )

(7)

wherec(x) indicates the class thatf x
a;t belongs to. We note that

the teacher model is �xed during KD, andL t only optimizes the
teacher’s projectorPt .

Learning objective for the student. Misaligned perspectives
may result in different observations. Therefore, student’s feature
generatorGs and projectorPs are �rst required to mimic teacher
by producing similar perspectives. To realize this objective, we
apply L rec to accomplish the recti�cation on the adaptive per-
spectives of teacher and student.L rec directly encourages the
similarity betweenA t andA s as

L rec = 1 �
1
N

NX

i=1

cos(Ai
s; A i

t ): (8)

Furthermore, the observation obtained from the student’s per-
spective also needs to imitate the teacher’s observation, which can
be achieved by minimizing KLD between their observationspa;t
andpa;s as

L ob =
1

H � W

H �WX

x=1

KLD (px
a;s jjp x

a;t ): (9)

The overall Adaptive Perspective Distillation objective for
student extends the loss in Eq. (2) withL ob andL rec providing
extra informative cues for distillation as

L s = L ce + � kd (L kd + L ob) + � rec L rec ; (10)

where � kd for L kd is set to 10, the same as those in SKD
and IFVD for fair comparison. As forL ob that minimizes the
Kullback-Leibler divergence from the adaptive observations, its
loss weight is empirically set to� kd . The weighting factor� rec is
set to 10.� for scaling the cosine similarity is 0.1 inL ob andL rec .
The sensitivity analysis of� rec and � is given in Sec.5.4. They
both work well on all datasets with different backbones without
further tuning.

Optimization. L t only optimizes the teacher’s projectorPt
because the gradients yielded byL kd , L rec and L ob will not
be back-propagated topt , A t and pa;t , as shown in Fig. 4.
On the other hand,L s optimizes the entire student model, i.e.,
feature generatorGs and classi�erCs, as well as the projectorPs.
Therefore,L t andL s work independently on each training batch.
As shown in Algorithm 1,� t represents the parameters of teacher’s
projectorPt , and� s denotes all trainable parameters of the student
model. Speci�cally, given a training batch, the teacher’s projector
Pt is �rst updated in lines 4-5. Then,Pt is detached to accomplish
the update of student’s parameters� s in lines 6-7 without back-
propagating the gradients to update� t .

Algorithm 1 Optimization of APD

Require: p(B): distribution over the training set.
Require: � , � : step size hyper-parameters.

1: Randomly initialize� t and� s.
2: while not donedo
3: Sample a batch of samplesBi � p(B)
4: Yield r � t L t w.r.t. jBi j training samples
5: Update� t  � t � � r � t L t
6: Yield r � s L s w.r.t. jBi j training samples
7: Update� s  � s � � r � s L s
8: end while

TABLE 1: Training con�gurations on different datasets. Epoch:
Training epoch number. BS: Batch size. InitLR: Initial training
learning rate. PS: Patch size for training.

Dataset Epoch BS InitLR PS
Cityscapes [6] 200 8 5e-3 713
ADE20K [56] 100 8 5e-3 473
PASCAL-Context [22] 100 12 7.5e-4 473

5 EXPERIMENTS

5.1 Dataset Description

Cityscapes [6] focuses on semantic understanding of urban street
scenes. It contains 5000 �nely annotated images. Speci�cally,
2975, 500 and 1525 images for training, validation and testing
respectively. 19 classes are required in prediction for evaluation.

ADE20K [56] is a rather challenging dataset that spans diverse
annotations of scenes, objects, parts of objects, and in some cases
even parts of parts. ADE20K contains up to 150 classes and
diverse scenes for semantic segmentation. 20000, 2000 and 3000
images are used for training, validation and testing.

PASCAL-Context [22] extends the original PASCAL VOC
semantic segmentation task with more detailed annotations for
the whole scene. 4998 and 5105 images are used for training and
validation, and 9637 images are used for testing. We evaluate all
models on 60 categories (59 + background), following the practice
of MMSegmentation [5].

COCO [18] is the most popular and challenging dataset for
object detection and instance segmentation. In this paper, we use
�COCO� to represent COCO 2017 dataset. It contains more than
200,000 images and 80 object categories for train, validation, and
test sets. We use the COCO 2017train set for training and report
the validation results on the COCO 2017val set. The results are
reported in COCO-style mAP.

5.2 Implementation Details

We adopt three popular scene parsing benchmark datasets
(Cityscapes [6], ADE20K [56] and PASCAL-Context [22]) in
experiments. Models are trained and evaluated on the training and
validation sets of these datasets respectively by default.

Both projectorsPt andPs are composed of two 1�1 convolu-
tional layers (denoted asdin � dout ) with an intermediate ReLU
activation layer, while the difference lies in the input & output
dimensions of the convolutional layers. Letdt andds represent the
dimensions of featuresf t and f s yielded by teacher and student
feature generatorsGt and Gs, respectively. Usually, because the
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(a) Cityscapes (b) ADE20K (c) PASCAL-Context

Fig. 5: Validation mIoU curves on Cityscapes, ADE20K and PASCAL-Context. Our proposed APD (colored in red) consistently
outperforms other methods throughout the training process. The teacher is PSPNet with ResNet-101 and the student is PSPNet with
ResNet-18.

teacher is with a larger capacity anddt � ds, teacher’s projector
Pt is required to compress the dimension off t from dt to ds,
matching that of the student featuref s. Therefore, the structure
of Pt is as: [dt � ds ! ReLU ! ds � ds], and the structure of
Ps is: [ds � ds ! ReLU ! ds � ds]. Then, the projected features
arel -2 normalized for calculating the cosine similarity.

The semantic segmentation models are built upon Sem-
seg [52]. Student models are trained following the default con-
�guration of PSPNet [54] except for the initial learning rate and
batch size because PSPNet uses 8 GPUs by default while we use
4 GPUs for training. Speci�c epoch numbers, initial learning rates
and training patch sizes used for different datasets are summarized
in Table 1. SGD is used for optimization. Weight decay and
momentum are set to 0.0001 and 0.9 respectively. The �poly�
learning rate decay [3] is used by multiplying the initial learning

rate with (1 �
current iter

max iter
)power , wherepower is set to 0.9.

All models are optimized without OHEM. As for the teacher,
since the feature generator and classi�er are �xed during training,
only the projectorPt requires gradients.Pt is optimized by Adam
optimizer with initial learning rate 1e-5 and beta (0.9, 0.99), which
generalize well on all datasets without additional tuning. Both
SKD [20] and IFVD [39] incorporate a GAN loss to accomplish
holistic distillation, while the proposed APD does not adopt this
strategy during training.

Data augmentation includes mirroring, re-scaling from 0.5
and 2.0, and random rotation from -10 to 10 degrees. Finally,
image patches are cropped from the original images as training
samples. During evaluation, following the of�cial implementation
of PSPNet [54], the sliding window inference strategy with the
training crop size is adopted for experiments in semantic seg-
mentation, and we output the prediction without additional post-
processing (e.g., fully connected conditional random �eld (CRF)
[16] and multi-scale testing). All experiments are conducted on
PyTorch with four NVIDIA GTX 2080Ti GPUs, and results are
obtained without altering the original labels. We will make our
code publicly available for reproducing all experimental results in
this paper.

5.3 Comparison with State-of-the-art

In this section, we show quantitative and qualitative compari-
son with recently proposed methods SKD [20], CSCACE [24],
KA [10] and IFVD [39]. For a fair comparison, we reproduce
these methods in the same training and testing settings as our
method.

TABLE 2: Performance comparison with state-of-the-art methods
on Cityscapesval with PSPNet [54] and DeepLab-V3 [3]. RN,
MN2 and EN represent ResNet [9], MobileNet-V2 [30] and
Ef�cientNet [33] respectively. Models with RN-18� are trained
with 512�512 crop size, and the others are trained with713� 713
crops following PSPNet [54].

Methods Backbone PSPNet DeepLab-V3
Teacher RN-101 78.15 78.47
Student-I RN-18 74.15 74.47

+ KD RN-18 74.81 73.67
+ SKD RN-18 74.56 74.03
+ IFVD RN-18 74.10 74.99
+ CSCACE RN-18 74.50 74.81
+ KA RN-18 74.59 74.87
+ Ours RN-18 75.68 75.45

Student-II RN-18* 73.20 74.19
+ KD RN-18* 73.33 74.53
+ SKD RN-18* 73.40 74.00
+ IFVD RN-18* 73.63 74.47
+ CSCACE RN-18* 72.98 74.46
+ KA RN-18* 74.18 73.82
+ Ours RN-18* 74.77 75.14

Student-III MN2-1.0 71.34 71.40
+ KD MN2-1.0 71.91 71.94
+ SKD MN2-1.0 72.40 71.34
+ IFVD MN2-1.0 72.94 70.79
+ CSCACE MN2-1.0 72.56 71.92
+ KA MN2-1.0 71.01 71.89
+ Ours MN2-1.0 73.66 74.47

Student-IV EN-B0 72.30 71.54
+ KD EN-B0 73.32 72.55
+ SKD EN-B0 73.45 69.47
+ IFVD EN-B0 74.43 72.93
+ CSCACE EN-B0 74.15 73.25
+ KA EN-B0 73.83 72.61
+ Ours EN-B0 75.79 74.92

Teacher MN2-1.0 71.34 71.40
Student MN2-0.5 63.34 63.89

+ KD MN2-0.5 64.60 66.03
+ SKD MN2-0.5 65.06 65.84
+ IFVD MN2-0.5 65.31 66.78
+ CSCACE MN2-0.5 65.31 66.82
+ KA MN2-0.5 64.64 66.06
+ Ours MN2-0.5 67.28 67.58

Statistical comparisons. As shown in Table 2, we make com-
parison between the teacher PSPNet-R101 and student models on
different backbones, i.e., ResNet-18 [9], MobileNet-V2 [30] and
Ef�cientNet [33]. Since our method enables models to form new
local perspectives that mine extra useful information, the proposed
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TABLE 3: Ef�ciency comparison on Cityscapestest. Teacher
model is PSPNet [54] with ResNet-101. RN, MN2 and EN
represent ResNet [9], MobileNet-V2 [30] and Ef�cientNet [33]
respectively.

Methods testmIoU Params (M) FLOPS (G)
ENet [26] 58.3 0.3580 3.612
ESPNet [21] 60.3 0.3635 4.422
FCN [31] 65.3 134.5 333.9
ERFNet 68.0 2.067 25.60
ICNet [53] 69.5 26.50 28.30
Re�neNet 73.6 118.1 525.7
PSPNet [54] 78.4 70.43 574.9
RN-18 + SKD 72.9 16.31 148.2
RN-18 + IFVD 73.2 16.31 148.2
RN-18 + CSCACE 73.0 16.31 148.2
RN-18 + KA 72.8 16.31 148.2
RN-18 + Ours 74.9 16.31 148.2
MN2-1.0 + SKD 72.1 4.840 39.44
MN2-1.0 + IFVD 72.0 4.840 39.44
MN2-1.0 + CSCACE 71.6 4.840 39.44
MN2-1.0 + KA 71.1 4.840 39.44
MN2-1.0 + Ours 73.5 4.840 39.44
EN-B0 + SKD 73.0 13.44 95.86
EN-B0 + IFVD 73.6 13.44 95.86
EN-B0 + CSCACE 73.5 13.44 95.86
EN-B0 + KA 72.9 13.44 95.86
EN-B0 + Ours 75.2 13.44 95.86

TABLE 4: Performance comparison with state-of-the-art methods
using PSPNet on the validation sets of three popular benchmarks:
Cityscapes [6], ADE20K [56] and PASCAL-Context [22]. Teacher
and student models adopt ResNet-101 and ResNet-18 as their
backbones.

Methods Cityscapes ADE20K PASCAL-Context
Teacher 78.15 43.44 48.50
Student 74.15 37.19 42.29

+ KD [12] 74.81 37.69 42.45
+ SKD [20] 74.56 37.61 42.53
+ IFVD [39] 74.10 37.89 42.74
+ CSCACE [24] 74.50 37.50 42.86
+ KA [10] 74.59 38.26 43.13
+ Ours 75.68 39.25 43.96

Adaptive Perspective Distillation achieves better performance
compared to other methods when different student backbones are
adopted.

We note SKD and IFVD only distill knowledge from an
unchanged global view with a �xed classi�er of the teacher. It is
via L kd [12] without new perspectives, causing limited knowledge
that can be transferred. Contrarily, the proposed method mines
extra cues for distillation by creating a new perspective for every
single image speci�cally, and thus our method consistently yields
signi�cant performance gain to all student models. Besides, in
Sec. 5.4, we show that our proposed APD is complementary to
SKD and IFVD.

The ef�ciency comparison is illustrated in Table 3 with the
test mIoU results on Cityscapes. We also conduct experiments
with PSPNet on ADE20K and PASCAL-Context to show the
superiority of our method on different datasets. Results are shown
in Table 4.

Cross-model distillation. To further manifest the generalization
ability of the prosed method, we conduct experiments across
different models, i.e., PSPNet! DeepLab-V3 and DeepLab-V3

TABLE 5: Cross-model distillation results on Cityscapesval with
PSPNet [54] and DeepLab-V3 [3]. RN, MN2 and EN represent
ResNet [9], MobileNet-V2 [30] and Ef�cientNet [33] respectively.
PSPNet! DL-V3 means the teacher network is PSPNet and the
student is DeepLab-V3, and vise versa.

Method Backbone PSPNet! DL-V3 DL-V3 ! PSPNet
Teacher RN-101 78.15 78.47
Student-I RN-18 74.15 74.47

+ KD RN-18 75.13 73.50
+ SKD RN-18 75.65 73.67
+ IFVD RN-18 75.42 74.29
+ CSCACE RN-18 74.93 74.33
+ KA RN-18 75.64 74.58
+ Ours RN-18 76.01 75.90

Student-III MN2-1.0 71.34 71.40
+ KD MN2-1.0 71.81 71.57
+ SKD MN2-1.0 72.45 71.74
+ IFVD MN2-1.0 70.97 72.54
+ CSCACE MN2-1.0 71.54 71.80
+ KA MN2-1.0 70.82 70.61
+ Ours MN2-1.0 73.22 73.66

Student-IV EN-B0 72.30 71.54
+ KD EN-B0 72.66 73.73
+ SKD EN-B0 72.29 73.69
+ IFVD EN-B0 72.87 74.06
+ CSCACE EN-B0 73.28 74.28
+ KA EN-B0 72.46 73.62
+ Ours EN-B0 75.03 75.51

Teacher MN2-1.0 71.34 71.40
Student MN2-0.5 63.34 63.89

+ KD MN2-0.5 64.42 64.88
+ SKD MN2-0.5 64.11 64.47
+ IFVD MN2-0.5 64.27 64.36
+ CSCACE MN2-0.5 65.13 65.04
+ KA MN2-0.5 65.46 64.68
+ Ours MN2-0.5 67.14 66.90

! PSPNet. The cross-model distillation Results are shown in
Table 5. It can be observed that IFVD and SKD may adversely
affect the performance for cross-model distillation as sometimes
they may cause performance degradation compared to the results
of KD proposed by Hintonet al. [12]. On the contrary, the
proposed method still consistently brings decent performance gain
in the practical cross-model setting.

Comparison with validation curves. Qualitative comparison
with validation curves is presented in Fig. 5. We note that these
validation results are obtained from the center regions cropped
with the training patch sizes (i.e.,473� 473for ADE20K [56] and
PASCAL-Context [22], and713� 713 for Cityscapes [6]), which
is different from the formal evaluation phase when the sliding
windows inference strategy is adopted. The center cropping for
the intermediate validation and the sliding window inference for
the �nal evaluation are both implemented according to the of�cial
PyTorch implementation of PSPNet.

From Fig. 5, we can observe that APD consistently outper-
forms other methods by a large margin on both three benchmark
datasets throughout the entire training process, which manifests
the robustness of our method.

Discussion. The proposed Adaptive Perspective Distillation
(APD) aims at: 1) letting the student mimic teacher to form local
perspectives that can well describe temporary feature distributions;
2) learning to form similar observations (predictions) based on
the local perspectives (classi�ers). In other words, both inter- and
intra-class distributions are leveraged by APD to probe more cues
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from individual training samples, and APD attempts to �nd a
better distribution descriptor for them.

Both SKD [20] and KA [10] exploit the structured information
without explicitly modelling the feature distribution, and the
difference is that KA adopts an auto-encoder to accomplish knowl-
edge transfer on the compressed features, while SKD directly let
the student mimic the raw correlation matrix without the feature
transformation.

It is worth noting that the �adaptation� of KA is different from
our proposed �adaptive perspective�. Speci�cally, the �adaptation�
of KA denotes the use of an auto-encoder that adapts the teacher’s
features to a compressed feature space to extract essential informa-
tion for distillation. However, the term �adaptive perspective� in
the proposed APD refers to the local classi�er that is conditioned
on the semantic information varying in individual images, serving
as a better feature distribution descriptor for mining additional
details during the distillation process.

Differently, CSCACE [24] leverages the channel-wise correla-
tion and a pseudo-label based adaptive cross-entropy loss, while
the experiments show that the results of CSCACE are also less-
satisfying that ours. Besides, IFVD [39] only makes use of the
intra-class distribution. Though IFVD also adopts cosine similarity
calculation for capturing the intra-class relation, without the inter-
class reasoning in Eqs. (5)-(6) andL ob, IFVD achieves inferior
results compared to APD. Moreover, with an eye towards a better
distribution descriptor, APD appliesL t andL rec to regularize the
teacher and student models respectively. Therefore, the proposed
learning objectives introduces further improvement to IFVD as
shown in Table 8. We note that the hyper-parameter� of APD is
used for scaling the output of cosine similarity, and it is helpful by
making the temporary inter-class distribution more discriminative.

Visual comparison. We present the qualitative comparison
between SKD and IFVD on Cityscapes, ADE20K and PASCAL-
Context in Fig. 6 where it is observed that our predictions are
generally better than the others by capturing more local contextual
information for distillation.

5.4 Ablation Study

In this Section, we �rst verify thatL ob andL rec are important to
align teacher’s observations and perspectives respectively. Then, as
two projectorsPt andPs are introduced during student training,
we show that the improvement brought byL ob and L rec is not
originated from these additional learnable modules. Besides, we
provide a sensitivity analysis of� rec and� to show the robustness
of our method.

Effectiveness ofL ob and L rec . The proposed Adaptive Per-
spective Distillation (APD) has two componentsL ob and L rec .
L ob accomplishes the alignment between auxiliary predictions
pa;t and pa;s (i.e., observations) obtained from the adaptive
perspectives, whileL rec recti�es student viewA s, making it
similar to A t of teacher. Because the adaptiveA s encodes more
speci�c semantic details for each image than the �xedCs, the
producedpa;s are generally more accurate thanps obtained from
Cs, as demonstrated in Fig. 3. Results in Table 6 show that
the observation alignment and perspective recti�cation are both
indispensable.

Different perspectives result in varying observations. Thus
perspective recti�cation is helpful for the observation alignment

TABLE 6: Ablation study on the validation sets of PASCAL-
Context and Cityscapes. Teacher is PSPNet with ResNet-101 and
student is PSPNet with ResNet-18. The �rst column denotes the
experiment IDs.L ob uses with soft targetspa;t as shown in
Eq. (9), whileL Local

ce means directly applying Cross Entropy loss
on pa;s with one-hot hard targets.

Exp. L kd L ob L Local
ce L rec Context City

I - - - - 42.29 74.15
II ! - - - 42.48 74.81
III ! ! - - 43.32 75.27
IV ! - ! - 42.92 74.47
V ! - - ! 42.88 74.62
VI ! ! - ! 43.96 75.68
VII ! - ! ! 43.38 75.32
VIII ! ! ! ! 43.87 75.72
IX - ! - ! 43.81 75.70
X - - ! - 42.50 74.41

TABLE 7: Ablation study of different methods for yieldingL rec
on the validation sets of PASCAL-Context and Cityscapes. ‘Cen-
ter’ and ‘Pixel’ adopt the alignment between class centers and
individual pixels respectively. ‘Center & Pixel’ combines both.

Datasets Center Pixel Center & Pixel
Context 43.96 43.40 44.06
Cityscapes 75.68 75.21 75.72

as proved by Exp.III & Exp.VI and Exp.IV & Exp.VII. However,
without observation alignmentL ob, implementingL rec alone with
L kd in Exp.V only slightly improves the performance of Exp.II.
On the other hand, merely applying observation alignment viaL ob
achieves decent improvement as shown by Exp.II & Exp.III. When
perspectives are recti�ed byL rec , L ob boosts performance from
42.88 from 43.96 as shown in Exp.V & Exp.VI.

In Eq. (9), pa;t is used as soft targets to distill knowledge
from teacher to student in the proposed APD. An alternative is to
replace the soft targets with one-hot labels, denoted asL Local

ce in
Table 6, thus Kullback-Leibler divergence in Eq. (9) equals to the
standard Cross Entropy Loss. We note that the difference between
L Local

ce andL ce is that the former is applied to local predictions
pa;s while the latter is applied tops.

Soft targets encode the �dark knowledge� of teacher and are
more informative than one-hot hard labels. Therefore, superior
performance has been achieved byL ob (Exp.III & Exp.VI) com-
pared toL Local

ce (Exp.IV & Exp.VII) in Table 6. While bringing
L ob and L Local

ce together in Exp.VIII is comparable to Exp.VI,
implying that the bene�ts ofL Local

ce do not outweigh that ofL ob.
Also, by comparing Exp.VI and Exp.VIII, we can conclude that
the hard one-hot label used byL Local

ce might adversely affect the
knowledge transfer that is accomplished byL ob with the soft
labels that are more informative [12]. Besides, Exp.IX shows that
even without the normal KD lossL kd , the proposedL ob andL rec
still achieve decent improvement compared to the baseline results
in Exp.I. However, by comparing the results of Exp.II, Exp.IV and
Exp.X, L Local

ce alone does not outperformsL kd .
In Eq. (8), student’s perspectiveA s is encouraged to be similar

to A t of teacher by minimizingL rec between class centers. An
alternative way is to apply the pixel-wise alignment betweenf a;t
andf a;s in Eq. (8) instead of the recti�cation on class centers. We
believe that mimicking local perspectives is conducive in distilling
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Image GT KD IFVD SKD Ours

Fig. 6: Visual comparison on Cityscapes, ADE20K and PASCAL-Context. White regions in GT are ignored during evaluation.

knowledge from teacher to student since the local observations
must be obtained by adaptive perspectives that vary according
to the content of individual images, thus the alignment between
the adaptive perspectives of teacher and student models may help
optimizeL ob. The experimental comparison is shown in Table. 7
where it is observed thatL rec yielded with class centers generally
leads to a better performance than the pixel-wise counterpart, be-
cause the former directly optimizes the adaptive perspectives that
are later used inL ob, while the pixel-wise alignment accomplishes
the perspective recti�cation indirectly. Moreover, the combination
of ‘Center’ and ‘Pixel’ does not bring considerable improvement,
manifesting the necessity of recti�cation on class centers.

Effect of projectors Pt and Ps. To generalize our method
to different teacher & student models whose output features are
with different channels, we use projectorsPt andPs to process
the feature maps of teacher and student to the same channels,
satisfying the requirement of the similarity calculation in Eq. (8).
Otherwise, the perspectives cannot be recti�ed. Two projectors are
only used for training and are simply discarded during inference,
boosting student models without structural change.

To show that the improvement ofL rec andL ob is not caused
by the two additional projectors, we implement SKD and IFVD
on the projected features (fa;t and f a;s ) to compare with the
performance obtained from the features without projection (ft
andf s). We note thatPt is still optimized byL t in the following
experiments for a fair comparison.

Experimental results are presented in Table8 where the results
of IFVD and SKD implemented on the projected features are

TABLE 8: Ablation study on the validation sets of PASCAL-
Context and Cityscapes with PSPNet. Teacher is built upon
ResNet-101 and student is with ResNet-18.L ifv andL skd are the
intra-class feature variation distillation and pair-wise distillation
of IFVD and SKD. We reproduce them according to their of�cial
implementations.P meansL ifv and L skd are applied to the
projected featuresf a;t andf a;s .

Exp. L k d L if v L skd P L ob L rec Context City

I ! - - - - - 42.48 74.81
II ! ! - - - - 42.74 74.10
III ! ! - ! - - 43.02 75.21
IV ! ! - ! ! ! 44.05 76.50
V ! - ! - - - 42.53 74.56
VI ! - ! ! - - 42.39 74.13
VII ! - ! ! ! ! 43.98 75.30

comparableto that without projectors as shown in Exp.II & Exp.III
and Exp.V & Exp.VI. Besides, the proposedL rec andL ob are still
complementary to the models implemented with IFVD and SKD,
proved by Exp.IV and Exp.VII in Table 8.

Layer number of projector. It is mentioned in Sec. 5.2 that the
projectors for teacher and student models are both implemented
by a 2-layers MLP with an intermediate ReLU activation layer.
To investigate the in�uence brought by different layer numbers of
MLP, the experimental results are shown in Table 9 from which we
can observe that the performance is not sensitive to different layer
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TABLE 9: Ablation study of different layer numbers for construct-
ing the projectors for teacher and student models on the validation
sets of PASCAL-Context and Cityscapes. The intermediate ReLU
layers are adopted if the layer number is larger than 1.

Datasets 1 2 3 4
Context 43.66 43.96 43.76 43.62
Cityscapes 75.69 75.68 75.58 75.00

TABLE 10: Ablation study of the effects of feature selection
(FS) mechanisms on the validation sets of PASCAL-Context
and Cityscapes. ‘Tea-FS’: only teacher’s local observations (pre-
dictions) pa;t are used for selecting the valid feature vectors
for semantic anchor generation. ‘Stu-FS’: only student’s local
observations (predictions)pa;s are used for determining the valid
feature vectors. ‘Tea-Stu-FS’: both teacher’s and student’s lo-
cal observations are adopted, thus the valid feature vectors for
computingA t and A s are �ltered by the correctpa;t and pa;s
respectively.

Datasets w/o FS Tea-FS Stu-FS Tea-Stu-FS
Context 43.96 43.79 43.01 42.23
Cityscapes 75.68 75.48 75.28 75.01

TABLE 11: Sensitivity analysis with different values of� rec and
� . Experimental results are obtained on PASCAL-Contextval.

Values 0.1 1 5 10 20 50 100
� rec 43.32 43.54 43.70 43.96 43.95 43.71 43.48
1=� 42.05 42.92 43.79 43.96 43.62 43.36 43.09

numbers, and the projectors implemented with 2 fully-connected
layers can achieve satisfying results on both two benchmarks.

Necessity of feature selection. In Eq. (4), with the ground
truth mask, we directly average the features of teacher and student
models to yield the semantic anchorsA t and A s respectively,
without considering the correctness of predictions of individual
feature vectors. Intuitively, pixels with wrong predicted labels
might impair the compactness of class centers since their features
might be far away from that of the correct ones, thus only
incorporating those feature vectors with correct predictions may
be helpful to the �nal performance. To probe the effects of the
feature selection mechanism, the results are shown in Table 10
where three additional feature selection schemes are implemented
for comparison.

We �nd that the feature completeness is more important than
the correctness. Speci�cally, merely considering the correctness
of the teacher’s predictions (Tea-FS) does not signi�cantly under-
mine the performance since the teacher network has been well
trained and thus the auxiliary predictions are generally correct
during training, retaining the majority. However, when the cor-
rectness of the student is leveraged (i.e., Stu-FS and Tea-Stu-FS),
the results are clearly lower than that of the baseline (w/o FS) and
Tea-FS, showing the fact thatthe feature completeness outweighs
the feature correctnessfor constructing semantic anchors in our
proposed distillation method. The information lost caused by the
feature selection should take responsibility for performance deduc-
tion of Stu-FS and Tea-Stu-FS, especially on PASCAL-Context
where the student model is more likely to make wrong predictions
than that on Cityscapes, as manifested by the discrepancy between

TABLE 12: Comparison on the validation sets of PASCAL-
Context and Cityscapes between cosine similarity and dot product
for observation generation. The teacher is PSPNet with ResNet-
101 and the student is PSPNet with ResNet-18. �Main-Cos�
means the main perspective (classi�er) adopts cosine similarity for
prediction and �Adapt-Cos� means the adaptive one uses cosine
similarity. Thus �Adapt-Cos� can only be adopted by APD.

Method Main-Cos Adapt-Cos Context City
Baseline-I (Default) N/A 42.29 74.15
Baseline-II ! N/A 41.90 74.25
KD-I (Default) N/A 42.48 74.81
KD-II ! N/A 42.03 73.77
APD-I 38.04 73.29
APD-II (Default) ! 43.96 75.68
APD-III ! ! 43.24 75.31

TABLE 13: Different values of� m for the baseline model imple-
mented with �Main-Cos�.

1=� m 10 20 30 40 50
Baseline-II 40.09 41.56 41.88 41.90 41.62

KD-II 40.22 41.79 41.92 42.03 41.88
APD-III 40.99 43.15 43.09 43.24 43.11

the mIoU results of their baselines (42.29 and 74.15).

Sensitivity analysis. Different hyper-parameters may cause
performance variation. Thus we conduct sensitivity analysis in
Table 11 where the best performance is robust to different values
of � rec and1=� within the range of 5-20.

5.5 Cosine Similarity in APD

In segmentation models, the universal perspectiveC applies dot
product on the featuresf yielded by the feature generatorG
to produce the observationp = Softmax (f � C) = Softmax
(jf jjCjcos(f ; C)). While, in the proposed APD, the adaptive
perspectiveA generates observationspa via cosine similarity:
pa = Softmax (cos(f a ; A )=� ). The difference between cosine
similarity and dot product is that the former measures the angle
between two vectors and the latter takes both the angle and
magnitudes into account.

Experimental results. Both cosine similarity and dot product
seem to be feasible for yielding observation, while we �nd that
cosine similarity is more suitable for optimizing the objectives of
APD (L rec andL ob). Results are shown in Table12. Speci�cally,
by comparing models of �Baseline� and �KD�, it can be found that
applying cosine similarity to the main universal perspectiveC(i.e.,
Main-Cos) to yield the main predictionsps andpt is detrimental
to the overall performance. On the other hand, �Main-Cos� also
causes performance deduction on the proposed APD, shown by
comparing �APD-II� and �APD-III�. As for �Adapt-Cos� that
can only be adopted by the proposed APD, it is necessary for
APD since the performance drops from 43.96 (�APD-II�) to 38.04
(�APD-I�) if the adaptive perspective does not exploit the cosine
similarity but dot product for yielding the auxiliary observations
pa;t andpa;s .

In summary, through the experiments in Table12, we empiri-
cally �nd that the dot-product is more suitable for the universal
perspective (i.e., normal classi�er) and the cosine similarity is
better for the proposed adaptive perspective.
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TABLE 14: Object detection results on COCO 2017val.

Method Backbone Schedule mAP AP 50 AP 75 AP s AP m AP l

Teacher ResNet101 - 42.04 62.48 45.88 25.22 45.55 54.60

Student ResNet18 1x 33.26 53.61 35.26 18.96 35.68 43.16
KD [12] ResNet18 1x 33.68 54.10 35.93 19.65 36.17 43.22

FitNet [28] ResNet18 1x 34.13 54.16 36.71 18.88 36.50 44.69
SSD [2] ResNet18 1x 33.89 53.35 36.46 18.59 36.20 44.43

FGFI [37] ResNet18 1x 34.16 54.43 36.60 18.79 36.57 44.97
OFD [11] ResNet18 1x 33.36 53.34 35.60 18.61 35.53 43.87
SKD [20] ResNet18 1x 33.97 54.66 36.62 18.71 36.67 44.14
IFVD [39] ResNet18 1x 34.20 54.63 36.66 19.16 36.65 44.71
FBKD [51] ResNet18 1x 35.20 55.20 38.30 18.80 37.90 47.80
CWD [32] ResNet18 1x 35.40 54.60 38.50 18.20 38.20 49.00

Ours ResNet18 1x 35.47 56.68 38.00 20.41 38.17 46.14

Student ResNet18 2x 35.13 55.40 38.20 19.66 37.81 45.13
KD [12] ResNet18 2x 35.56 55.56 38.58 19.43 38.88 47.09

FitNet [28] ResNet18 2x 35.64 55.23 38.64 19.52 38.75 46.27
SSD [2] ResNet18 2x 35.60 55.27 38.60 20.22 37.97 46.95

FGFI [37] ResNet18 2x 35.93 56.41 38.72 19.86 38.14 46.41
OFD [11] ResNet18 2x 35.49 55.68 38.17 19.71 38.01 47.01
SKD [20] ResNet18 2x 35.56 56.04 38.55 19.99 38.18 45.98
IFVD [39] ResNet18 2x 35.87 56.58 38.59 20.65 38.56 46.20
FBKD [51] ResNet18 2x 37.00 57.20 39.70 19.90 39.70 50.30
CWD [32] ResNet18 2x 37.00 56.70 40.20 19.40 40.30 50.40

Ours ResNet18 2x 37.08 57.99 40.13 21.59 39.88 48.38

Teacher ResNet50 - 40.22 61.02 43.81 24.16 43.53 51.98

Student MobileV2 1x 29.47 48.87 30.90 16.33 30.77 38.86
KD [12] MobileV2 1x 30.13 50.28 31.35 16.69 31.91 39.56

FitNet [28] MobileV2 1x 30.20 49.80 31.69 16.39 31.64 39.69
SSD [2] MobileV2 1x 29.96 48.76 31.65 16.51 31.56 39.75

FGFI [37] MobileV2 1x 30.27 49.87 31.60 17.03 31.82 40.06
OFD [11] MobileV2 1x 29.73 48.39 31.67 16.26 31.63 39.29
SKD [20] MobileV2 1x 31.52 50.72 33.35 17.66 33.52 40.75
IFVD [39] MobileV2 1x 30.67 50.30 32.43 17.09 33.62 38.38
FBKD [51] MobileV2 1x 32.20 52.80 33.70 18.00 34.50 43.80
CWD [32] MobileV2 1x 31.20 49.00 33.30 14.70 32.60 44.00

Ours MobileV2 1x 32.58 53.23 34.41 19.12 34.66 42.35

TABLE 15: Instance segmentation results on COCO 2017val. The results are measured in box mAP and mask mAP.

Method Backbone mAP box mAP mask AP mask
50 AP mask

75 AP mask
s AP mask

m AP mask
l

Teacher ResNet101 42.90 38.63 60.45 41.28 19.48 41.33 55.29

Student ResNet18 33.98 31.25 51.07 33.10 14.18 32.80 45.53
KD [12] ResNet18 34.53 31.66 51.85 33.59 14.80 33.38 45.73

FitNet [28] ResNet18 34.69 31.75 51.46 33.82 14.50 33.25 46.76
SSD [2] ResNet18 34.17 31.10 50.59 32.92 14.14 32.40 45.84

FGFI [37] ResNet18 34.73 31.85 51.59 33.72 14.95 33.25 46.94
OFD [11] ResNet18 34.29 31.56 51.02 33.31 14.19 32.73 46.59
SKD [20] ResNet18 34.53 31.62 51.90 33.54 14.48 33.44 46.10
IFVD [39] ResNet18 34.59 31.64 52.06 33.38 14.93 33.49 46.34
FBKD [51] ResNet18 35.40 32.10 52.50 34.00 14.20 34.10 48.10
CWD [32] ResNet18 35.60 32.50 52.00 34.70 15.70 35.00 46.10

Ours ResNet18 35.90 32.84 53.70 34.71 15.77 34.79 47.81

Analysis. The performance discrepancy between �Main-Cos�
and �Adapt-Cos� might be related to the formation processes of
the universal perspective that is shared by all training images and
the adaptive perspective that is created individually. The shared
universal perspective approaches to an optimal magnitude by well-
�tting the entire training set. The magnitude values of features
serve as additional descriptors, revealing more information for
individual feature vectors. Therefore, the universal perspective,
with well-learned class-wise magnitude, achieves better perfor-
mance by adopting the dot product. However, the magnitude of
the adaptive perspective is determined by the individual feature
map and thus the magnitude might be biased towards the feature
vectors with large magnitude, causing inappropriate representation

for those features with low magnitude. Also, the magnitude values
of features belonging to the same category vary in different
images due to the varying co-occurrent contextual information.
Thus we instead only focus on the semantic relation by adopting
cosine similarity to alleviate the issues caused by the magnitude
instability of the adaptive perspective that is formed merely based
on individual samples.

Besides, it is worth noting that, since the purposes of �Main-
Cos� and �Adapt-Cos� are different, we have carefully tuned the
values of the scaler� m for �Main-Cos� to have a fair comparison
with �Adapt-Cos� in Table 12. Speci�cally, according to the
sensitive analysis in Table 11,� of �Adapt-Cos� is set to 0.1 (i.e.,
1=� = 10) , while directly applying� m = 0:1 to �Main-Cos�
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signi�cantly worsens the performance as shown in Table 13 where
1=�m = 40 (i.e., � m = 0 :025) achieves the best performance.
Thus models with �Main-Cos� in Table12 are implemented with
� m = 0:025.

5.6 Extensions

Although our method is motivated from the perspective of se-
mantic segmentation tasks, it also generalizes well to the tasks
of object detection and instance segmentation. Implementation
details and results are presented as follows.

5.6.1 Object Detection

Implementation details. We use the most popular Faster-
RCNN-FPN detector in Detectron2 [40] with different backbones
as our strong baselines. We use the standard training policies
provided in Detectron2 excepts for the number of GPUs. The
original models in Detectron2 are trained using 8 GPUs. The
of�cial 1� training policy is to train 90,000 iterations with 16
images per batch. The learning rate is initialized as 0.02 and
decayed by 10 at 60,000 and 80,000 iterations. The baseline and
other models are trained on 4 GPUs, thus we halve the batch size
to 8 and double the total iterations to 180,000. The initial learning
rate is 0.01 and it decays by 10 at 120,000 and 160,000 iterations.
Our reproduction yields similar baseline performance and costs the
same overall GPU time. We use the standard multi-scale training
augmentations. The input images are randomly resized to one of
the sizesf640, 672, 704, 736, 768, 800gand then images are
randomly horizontal �iped with a probability of 0.5. We do NOT
use any augmentations during the inference.

We apply the proposed APD to the features after the RoI Align
operation. We simulate the scenario in the semantic segmentation
tasks and assume every feature vector in the feature map belongs
to the class of the corresponding proposal. Then we consider
all proposals in a mini-batch as a whole and generate adaptive
perspectives in a batch-wise manner.

We reimplement the KD loss proposed by Hintonet al.on the
logits of the classi�cation branch in the RoI head. The loss weight
is also set to 10. We notice that, in object detection, the teacher
and student may have different proposals, causing a mismatch
between the features after the RoI Align operation as well as
the �nal predicted logits. To address this issue, since only the
student’s proposals are used for generating the �nal task losses,
we let the teacher network adopt the proposals yielded by the
student, thus the teacher’s features and logits are aligned with that
of the student.

SSD [2] and FGFI [37] are the distillation methods speci�cally
designed for object detection. However, the baseline methods used
by them are relatively weaker than the popular ones. So we re-
implement SSD and FGFI on our stronger baseline according to
the paper or the of�cial code provided by the authors. OFD [11] is
another distillation method that improves the student detector by
proposing a marginal loss to leverage BN’s information to guide
the distillation process. Also, we make a comparison with the
recent state-of-the-art distillation method named FBKD [51] that
adopts the attention guided and non-local distillation on detectors.

Since object detection is also a task of dense prediction, we
compare with SKD and IFVD that are originally designed for se-
mantic segmentation, and both SKD and IFVD are re-implemented
according to their of�cial implementations. Speci�cally, we apply

the SKD loss on the features after the FPN structure with a 2�2
down-sampling, following its default con�gurations. However,
since class labels are required by IFVD, we apply the IFVD loss
on the features after the RoI Align operation. Our code for object
detection will also be made publicly available.

Results. We summarize our results on COCO [18] with the
Faster-RCNN-FPN [27] detector in Table 14. We re-implement the
classic distillation methods KD and FitNet, as well as one recent
method FBKD [51] that achieves state-of-the-art performance
for distillation in object detection. Moreover, to comprehensively
compare with the methods in semantic segmentation, we also
apply SKD and IFVD to the object detection task, since both
segmentation and detection tasks require structured dense pre-
diction. It can be observed in Table 14 that our method still
outperforms most of the other methods by a large margin on
the detection task, including SSD and FGFI that are speci�cally
designed for detection. Besides, the proposed method achieves
comparable results to the recent state-of-the-art distillation method
in object detection (i.e., FBKD). These results further demonstrate
the effectiveness and generalization ability of our method.

We present the qualitative comparison between SKD and
IFVD on COCO2017val set in Fig. 7 where it is observed that
our predictions are generally better than the others.

5.6.2 Instance Segmentation
We further adapt our method to the instance segmentation task on
COCO 2017 dataset. Instance segmentation is a more challenging
task aiming to segment every object in each image. The Mask-
RCNN with FPN in Detectron2 is adopted as our baseline. The
training process of instance segmentation is similar to that of
object detection, following the standard training policies provided
in Detectron 2.

The results are summarized in Table 15 where our method
improves the results of instance segmentation task by a large
margin, while the other related methods barely improve the
baseline performance. The challenging instance segmentation task
further demonstrates the superiority of our proposed method. The
qualitative comparison on COCO2017val set is shown in Fig. 7.

6 CONCLUSION

We have presented the proposed Adaptive Perspective Distillation
(APD). Different from the previous distillation methods that distill
knowledge via pixel-wise predictions obtained by the �xed per-
spective (i.e., classi�er), APD aims at creating adaptive perspec-
tives for individual samples, revealing more details on the encoded
feature for helping student models achieve better performance.
APD has no structural constraints on the base model and thus
can be easily applied to normal semantic segmentation frame-
works. APD is also complementary to other existing knowledge
distillation methods in segmentation. The extensive comparison
with state-of-the-art knowledge distillation methods for semantic
segmentation demonstrate the effectiveness and generalization
ability of APD.
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