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Abstract Strong semantic segmentation models require large backbones to achieve promising performance, making it hard to adapt
to real applications where effective real-time algorithms are needed. Knowledge distillation tackles this issue by letting the smaller
model (student) produce similar pixel-wise predictions to that of a larger model (teacher). However, the classi er, which can be deemed
as the perspective by which models perceive the encoded features for yielding observations (i.e., predictions), is shared by all training
samples, tting a universal feature distribution. Since good generalization to the entire distribution may bring the inferior speci cation to
individual samples with a certain capacity, the shared universal perspective often overlooks details existing in each sample, causing
degradation of knowledge distillation. In this paper, we propose Adaptive Perspective Distillation (APD) that creates an adaptive local
perspective for each individual training sample. It extracts detailed contextual information from each training sample speci cally, mining
more details from the teacher and thus achieving better knowledge distillation results on the student. APD has no structural constraints
to both teacher and student models, thus generalizing well to different semantic segmentation models. Extensive experiments on
Cityscapes, ADE20K, and PASCAL-Context manifest the effectiveness of our proposed APD. Besides, APD can yield favorable
performance gain to the models in both object detection and instance segmentation without bells and whistles.

Index Terms Scene Understanding, Semantic Segmentation, Knowledge Distillation.
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1 INTRODUCTION

Deep learning has signi cantly boosted the performance of se-
mantic segmentation. Powerful segmentation models [3], [54]
require strong feature extractors [9], [36], [41] to reach high
performance. While real-time algorithms are more preferred in
practice. Designing ef cient segmentation models [53], [21], [44]

is thus important. . . . . .
Compared to hand-crafted ef cient model desian. knowled Fig. 1. Deep semantic segmentation framework is abstracted
P an, s the process that the nal pixel-wise observation (prediction)

d?stillatiop (KD) .[12] is a more gener.al technique .fof achievings obtained from the perspective (classier) based on encoded
high ef ciency since KD can be applied to any existing model§eatures produced by the deep neural networks.

without structural constraints. Speci cally, knowledge is dis-
tilled from a large model (teacher) to a smaller one (student)
by minimizing the Kullback-Leibler divergence (KLD) between
student output and soft target yielded by the teacher.

KD has been shown effective in classi cation [12], [28], [34],
[42], while in segmentation, models are required to maintain tIF

encoded features in certain resolutions and accomplish pix er as a form of perspective for a model. Put differently, the

yvise Iapeling by up-_sar_npling to the. original size. Contextu ference of a segmentation model can be deemed as a process
|r2fokrma:|odni 'tSI f‘ssrimr'all Irl:]) segdmenn'f[ﬁtlog é:)st;/alfse n;o?l/elrs C%%%‘i the perspective (classier) projects the encoded high-level

1ake predictions merely based on the  value ot EVery SINg& mantic information to yield observations (predictions) for the
pixel. Design for contextual information enrichment (i.e., global

i 19 id i 541 dilated lution [4 dviewer, as illustrated in Fig. 1. Compared to the student, the
p?to lrt1_g [ 3]é pyramid poo mg [_ ] Ia(tah cgnvol_u lon I[D] aNGieacher usually has a better perspective because of the large feature
attention [38]) can signi cantly improve the baselines. FeVIOUShcoder that can produce high-quality features to learn a good

thods [20], [39 distillation sch to extract angd
{‘ne ? S t[ ]t, [ d]' p])cropos;(_a 'S'fa |ct)n s¢ emes_t 0 extr?;l: ;}%rspective, providing more accurate observations (predictions)
ransfer structured information on features, while it is notable uged as soft targets in normal KD loss [12].

one important factor perspective in semantic segmentation IS . .
seldompstudied persp 9 During KD, the teacher’s feature encoder and perspective are
' xed. Both of them generally t the universal distribution given

Z. Tian, P. Chen, X. Lai, L. Jiang, B. Yu, M. Yang and J. Jia are with théat they have been suf ciently trained on the entire training set.
Department of Computer Science and Engineering, The Chinese UniversityTéfe xed universal perspective of teacher achieves high-quality

Perspective works by representing the light that passes from

a scene through a plane to the viewer’s eye. In fdegp models

erceive the encoded semantic features and make nal predictions
m the essential “perspectiveWe can consider the nal clas-

golr_‘i% *fsocv?t'h Smartmore evaluation results by generalizing to all testing samples. However,
H. Zhao is with University of Oxford. the soft targets exp_loited with such_a good generalization might not
Z. Tian and P. Chen contribute equally. be the optimal choice for transferring knowledge from the teacher
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Fig. 2: Qualitative t-SNE [35] results of the difference between the xed universal perspective (top) and adaptive perspective (bottom).
Categories are represented by different colors. Top gures show that generally correct observations can be obtained by the xed universal
perspective, while the lack of speci cation to individual samples causes erroneous observations/knowledge for distillation. On the other
hand, with our proposed APD, models learn to form adaptive perspectives that are clearer decision boundaries as demonstrated in thi
bottom gures where the adaptive perspective, conditioned on the content of each image, decently describes the feature distribution.
Therefore, APD reveals additional detailed co-occurring semantic cues conditioned on individual training samples so as to better
accomplish the knowledge distillation.

to student, because, with a certain capacity, high generalization
might cause poor speci cation that can reveal more useful infor-
mation of the encoded features for decent knowledge distillation.
To maintain good speci cation, the feature maps of different
training samples should be projected by different perspectives to
yield predictions, because even the same object may occur with
varying co-occurrence information in different training samples,
and a xed universal perspective might not be able to well handle
all the individual cases.
To address this key issue, we propose a new knowledge
distillation method based on the concept of perspective for se-
mantic segmentation. Our method enables models to form the
adaptive perspective for every input image, i.e., different images
are processed by different perspectives, based on their contextual
contents. As illustrated in Figur@sand3, the adaptive perspectiverig. 3: Training mloU curves of the auxiliary predictiqn, s and
is 3‘5‘3?3@ f‘(’jf ez.at;:h.imageh.agd it C"’l‘” better describel :jhe ff& main predictiom of the student model on PASCAL-Context.
coded feature distribution, which reveals more contextual detajs i i i
that are conducive to knowledge distillation. As teacher alw;fﬁﬁ,;g;pf,e?;%ggﬁ;n?gsfgzgi\tje]?yé ?—izugixﬁ)ﬁ:ﬁ epcrg\(/:i(?czng e
learns a better universal perspective, we also align the adapiieves much higher mloU on the training set becapise
perspectives of teacher and student. It makes the student l§arenerated by the adaptive perspective that is with high
to form better adaptive perspectives under the teacher’s guidargﬂeci cation to each image, mining more details for knowledge
Besides, the auxiliary observations (predictions) are obtained fre{itillation and forming better decision boundaries as depicted by

the adaptive perspectives of the teacher and student. They @ bottom examples in Fig. 2. The comparison on the validation
then used for distillation from the adaptive perspectives, furthggt js presented in Fig. 5.

boosting performance.

We name our method Adaptive Perspective Distillation (APD)
since it offers an adaptive perspective to reveal more contextiNdte only two light-weight projectors are introduced for knowl-
cues for semantic segmentation. Our method is effective in boostlge distillation, and, after training, they are simply discarded
ing different models on various benchmark datasets, achievimihout causing any structural modi cation to the original model
advanced performance compared with state-of-the-art algorithrdaring evaluation, manifesting the substantial practical merit. In
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summary, our contribution is threefold. makes use of both channel and spatial correlation (CSC) with

Different from the common practice in KD, we exam indi-an adaptive cross-entropy (ACE) loss that tries to combine the
vidual images and generate adaptive perspectives and ob&egtits of the ground truth labels and predictions of the teacher
vations to improve knowledge distillation. network. More recently, [15] applies domain adaptive distillation
The proposed APD is model-agnostic and achieves grd@ttackle the unsupervised domain adaptation problem and yields
success by Signi Cant|y improving different semantic Segdecent imprOVement. However, the Study of knOWIedge distillation
mentation models on popular datasets without structurfll Semantic segmentation is still far from satisfactory.

constraints. Alternatively, in this paper, we analyze the knowledge dis-
Our method is also effective for knowledge distillation on théllation problem from a new view, and propose the Adaptive
tasks of object detection and instance Segmenta’[ion, fum&grspective Distillation that achieves advanced performance on
demonstrating the generalization ability. different baselines and datasets.

2 RELATED WORK 3 PRELIMINARY - KNOWLEDGE DISTILLATION

Large models always achieve better performance than the small

Semantic segmentation. Semantic segmentation is a fundamen; s pecause of the large capacity. As suggested by Hitton
tal and challenging task that requires accurate pixel-wise predgf-[lZ]

in steps. Dilated convolution [3], [46] enlarges the receptive elgh; o in the teacher model, such as correlation between different

that is important for per-pixel predictions based on the contextUglisies which is conducive to the representation learning and
information. Pooling is another way for providing more contextual, oot be expressed by the hard labels

cues, such as global pooling [19], pyramid pooling [3], [54], [43], | j; et al, [20] apply KD to semantic segmentation where the

and strip pooling [13]. Note attention mechanism further boos{ginack-Leibler divergence (KLD) is calculated in a pixel-wise
the performance by leveraging the long-range relationship acrogsner. Formally, Il andW denote the height and width of the

features [48], [55], [50], [7], [14], [17], [8], [47]. _ prediction, and the knowledge distillation losgg is the average
Recently, in order to perform pixel-wise semantic segmentgq of all pixels as

tion in real-time on mobile devices, ef cient segmentation models
are developed [26], [21], [53], [45]. E-Net [26] incorporates early 1 .
down-sampling, lter factorization, and pooling in parallel with Lkd = 57 KLD (psiipt); (1)

' ' H W
strided convolution to reduce the computation overhead without x=1
compromising accuracy. ESPNet [21] builds the ef cient spatiavherex is the pixel index, thugpy and p} represent the class
pyramid (ESP) module with factorized convolutions to accelerapgobabilities ofx-th pixel predicted by teacher and student models
the model. ICNet [53] leverages the multi-resolution branché&gspectively.
with label guidance to accomplish real-time inference effectively. It is worth noting that, normally, the teacher model is xed
BiSeNet [45] proposes the spatial- and context-path to obtalnring training to provide consistent soft targgks to student,
suf cient contextual cues ef ciently. and Lyg is used as an auxiliary loss that is optimized together

T T with the main losd ¢ produced byp: and one-hot hard labels.
Knowledge distillation. Knowledge distillation was prOposedTherefore, the overall training objectiteis

by Hinton in [12]. It supervises a compact model by a larger

pre-trained teacher in classi cation. The teacher provides soft L=Le+ kilkd; 2)

labels, which contain useful dark knowledge for the student. ) )

The student could learn better results from the soft labels. Lat¥eré kd is set to 10 following [20], [39].

FitNet [28] distills knowledge from the features instead of the nal

prediction, which opened a new door in knowledge distillatiory ApaAPTIVE PERSPECTIVE DISTILLATION

Following work [49], [25], [11] studied how to extract useful

information from the features to better transfer to the student. Overview. All semantic segmentation models can be decom-
The study of knowledge distillation in semantic segmentatiguosed into two components: 1) feature gener&and 2) classi er

tasks commences in recent years. SKD [20] extracts structu@dBothGandCare xed in the teacher model during distillation.

information from the features. It also leverages a GAN network dfeacher’s classi elG takes the featurefs, extracted fronfs and

top of the prediction of teacher and student to distill the holistigroduces soft targets fdryq. However,G ts the entire training

knowledge. Similar to SKD, the structural knowledge is also usest, and thus it provides a xed universal perspective for mining

in KA [10] by distilling the spatial correlation from the element-knowledge from each feature map extracted3yf the teacher.

to-element similarity matrix, but differently, KA optimizes the To further investigate the dark knowledge inside the teacher,

feature similarity in a transferred latent domain formulated bye take a closer look at each training sample by forming individual

an auto-encoder, instead of the original features used by SKD aaptive perspective&; that are composed of semantic anchors

alleviate the issues brought by the inconsistency between teacher, representative vectors for individual semantic classes) ob-

and the student. After that, IFVD [39] extracts the intra-clagsined from the encoded featurés, which serves as another

feature variation on the features. SKD replaces the transformateuiliary task providing local perspectives for distilling knowl-

in SKD with an IFV transformation. Besides, CSCACE [24kdge. Auxiliary observationg,; are then generated by adaptive
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Fig. 4: lllustration of our method. The input image is rst processed by teacher and student enderd@;) respectively to get the

encoded feature mafis andf ;. To accomplish normal KDL.«q [12] is applied to the predictions obtained from the main classi ers

C andC, offering a global perspectivé.; andf ¢ are also transformed by projectof; (andPs) to form adaptive classi eré\; and

Ag, serving as local perspectives that reveal useful details by better describing the feature distributions as shown in Fig. 2 and Fig. 3. We
note that the projected featurkg,, andf .. arel-2 normalized. Then, the distillation from the adaptive perspectives is accomplished

by the proposed.;ec andL oy, that recti es adaptive classi ers and aligns auxiliary predictiopg.{ andp,.s) respectivelyL only

updates teacher's projectB¥, and the gradients yielded lykq, Lrec andL op Will not be back-propagated fo,, Ay andp,.. The

normal cross entropy lodsce applied top, is omitted in this gure for simplicity.

perspectivesA; and encoded features, for transferring the images, i.e., being “adaptive” to different contexts, for yield-
knowledge from teacher to student. The student feature generamtgy auxiliary predictions during distillation. With the semantic
G is required to mimidc to yield similar adaptive perspectivesinformation provided by the ground-truth labels, the adaptive
As, as well as the auxiliary observatiopg., obtained fromAs. perspective can better describe the encoded semantic intra- and
Since both the adaptive perspective and auxiliary observations erer-class distributions, as shown in Figs. 2 and 3 where more
generated speci cally for each training sample, they provide moaecurate predictions can be obtained from the adaptive perspective.
informative cues for KD. Our method is abstracted in Fig. 4.  Thus, though it cannot be used for the nal prediction due to the
. . . . use of the ground-truth label, it is suitable to distill knowledge
Adaptive perspective. In the following, we introduce the way . L .

. . . etween the student and teacher with deeper insight, i.e., how the
to generate adaptive perspectives to better distill the knowledb e : . .

. . .model interprets the encoded features for different images. Note

between the teacher and student models. First, two light-wei ? : TR
Is normal to add extra modules during distillation in literature.

p;OJii(t:t?rrr? (Ij|et tvI\;o EdayetrithliJ Itlr;l?yerrPe:ceptro(;lst (er‘P dS) W'ttll'he proposed two projectors are not used during inference, so the
a ermediale =eL.U activalion 1ayer, are used 1o produce g, o) of ciency is not adversely affected.

adapted features for constructing new perspectives with the same . : " -
. . After we get the adaptive perspectives, additional explicit
channel numbers, making our method model-agnostic becauseotpe

. Servations can be obtained by calculating the cosine similar-

teacher and student models usually have different output channels. .
) : ity between the adapted featurds,¢( andf ,..) and adaptive

We can formalize this procedure as : ;

perspectivesA; and As) as Egs. (5)-(6) whera is the pixel
fa = Pu(f); fas= Ps(fy): ©) index, i andj are the indexes amonly adaptive perspectives.
‘ ’ Therefore,py; and pXk tell how likely the x-th pixels belong
Masked average pooling (MAP) is then applied ftg, and tothe correspondingrth semantic anchors of teacher and student
f 5.5 to generate theC-dimensional semantic anchoss! and respectively.

i [1 Clf; ; .
AL 2 R (i 2 f1;::;;Ng) as shown in Eq. (4), where A exp(cosf % ;Al)= )

M 2RI W 1ljs the binary mask obtained from the ground P = Py . (5)
truth label, indicating whether the features belong to ctasand ' i1 exp(cosf 5y AL)=)
x denotes the feature positidN. represents the number of classes « .
contained in the current image, and different images may have xi — o ©xp(cosf asiAs)= ) ©)
different values ofN . For simplicity, we only discuss the case Pais = P szl exp(cosf Xg;AL)= )
with one single image. o ’ o .
P uw P w A new hyper-parameter is introduced for yielding predic-
Al = o far M Al = 5l fas MT 4 tions via cosine similarity because the value of cosine similarity
t= P ;11/\{ M X ’ s P ;iyxll M X : ) ranges from -1 to 1 thus the results of the Softmax operation

performed in Egs. (5)-(6) are constrained within a rather small

We name the collection of these features, i.e., semantic atale. is adopted to enlarge the output scale for facilitating the
chors, as “adaptive perspective” because they are then put togetiimization performed with Egs. (5)-(6), and we empirically set
to form a classi er whose semantic information varies on different to 0.1 in all experiments.
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Learning objective for teachers adaptive perspective. Algorithm 1 Optimization of APD

Teacher’s projectoiP; is randomly initialized by the default Require: p(B): distribution over the training set.
setting of PyTorch, thus it will collapse with meaningless intelRequire: , : step size hyper-parameters.
pretation without optimization. To ensure thBt can provide 1. Randomly initialize ; and s.

representative perspectives; 2 RIN € 1 that reveal more 5. while not donedo

contextual details for each image, an explicit regularization is;. Sample a batch of sampl&  p(B)
indispensable features belonging to clagsshould get closerto 4. vield r L, w.r.t.|B;j training samples
At and are far from the semantic anchors of the other co-occurring  Update t ro Lt

categories. Therefore, we introduce the learning objective fog.  Yield r .Ls w.rt. jBjj training samples

teacher’s projectoP; as 7. Update ¢ s r.Ls
1 Hyw eXp(COS(fX.t AS(X) ): ) 8: end while
L = log P at’ :
H W i N, exp(cos(f atAD= ) TABLE 1: Training con gurations on different datasets. Epoch:

Training epoch number. BS: Batch size. InitLR: Initial training

wherec(x) indicates the class théty, belongs to. We note that learning rate. PS: Patch size for training.

the teacher model is xed during KD, arld; only optimizes the
teacher’s projectoP; .

Dataset Epoch BS InittR PS
Learning objective for the student. Misaligned perspectives Cityscapes [6] 200 8 5e-3 713
ADE20K [56] 100 8 5e-3 473

may result in different observations. Therefore, student’s feature
generatoiG; and projectoiPg are rst required to mimic teacher
by producing similar perspectives. To realize this objective, we
apply Lrec to accomplish the recti cation on the adaptive PE'L  ExPERIMENTS
spectives of teacher and studehte. directly encourages the

PASCAL-Context [22] 100 12 7.5e-4 473

similarity betweemA; andAs as 5.1 Dataset Description
B i Cityscapes [6] focuses on semantic understanding of urban street
rec =1 N COS(As; Ay): scenes. It contains 5000 nely annotated images. Speci cally,
=1 2975, 500 and 1525 images for training, validation and testing

Furthermore, the observation obtained from the student’s pegspectively. 19 classes are required in prediction for evaluation.

spective also needs to imitate the teacher’s observation, which (,:AaIS]EZOK 56l | ther challenaing dataset that di

be achieved by minimizing KLD between their observatipns . [56] isara er chaflenging dataset that spans diverse

andp,,.. as ' annotations of scenes, objects, parts of objects, and in some cases
a;s

even parts of parts. ADE20K contains up to 150 classes and
B diverse scenes for semantic segmentation. 20000, 2000 and 3000
KLD (paslipat): (9) images are used for training, validation and testing.

PASCAL-Context [22] extends the original PASCAL VOC
Semantic segmentation task with more detailed annotations for
the whole scene. 4998 and 5105 images are used for training and
validation, and 9637 images are used for testing. We evaluate all
Ls=Leet kd(Lka+ Lob)* reclrec; (10) models on 60 categories (59 + background), following the practice

) _ of MMSegmentation [5].
where g for Lyg is set to 10, the same as those in SKD

and IFVD for fair comparison. As fot o, that minimizes the COCO [18] is the most popular and challenging dataset for

Kullback-Leibler divergence from the adaptive observations, i@Piect detection and instance segmentation. In this paper, we use

setto 10. for scaling the cosine similarity is 0.1 ngp andL yec . 200,000 images and 80 object categories for trajn, validation, and
The sensitivity analysis of ¢ and is given in Sec5.4. They test sets. We use the COCO 20t&in set for training and report

both work well on all datasets with different backbones withodf€ valida}tion results on the COCO 20¢4al set. The results are
further tuning. reported in COCO-style mAP.

Lop= ———

T H W

x=1

The overall Adaptive Perspective Distillation objective fo
student extends the loss in Eq. (2) wlth, andL e providing

extra informative cues for distillation as

Optimization. L only optimizes the teacher’s projectét;
because the gradients yielded hyq, Lec and Loy will not
be back-propagated tp;, Ay and p,;, as shown in Fig. 4. We adopt three popular scene parsing benchmark datasets
On the other handl. s optimizes the entire student model, i.e.(Cityscapes [6], ADE20K [56] and PASCAL-Context [22]) in
feature generatdBs and classi erG;, as well as the projectd?s.  experiments. Models are trained and evaluated on the training and
ThereforeL; andL ¢ work independently on each training batchvalidation sets of these datasets respectively by default.

As shown in Algorithm 1, ; represents the parameters of teacher's Both projectord; andPs are composed of two 1 1 convolu-
projectorPy, and s denotes all trainable parameters of the studetional layers (denoted a, doy ) with an intermediate ReLU
model. Speci cally, given a training batch, the teacher’s projectactivation layer, while the difference lies in the input & output
P, is rst updated in lines 4-5. Therk; is detached to accomplish dimensions of the convolutional layers. lcktanddg represent the

the update of student’s parametetsin lines 6-7 without back- dimensions of featurels, andf ¢ yielded by teacher and student
propagating the gradients to update feature generator& and G;, respectively. Usually, because the

5.2 Implementation Details
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(a) Cityscapes (b) ADE20K (c) PASCAL-Context

Fig. 5: Validation mloU curves on Cityscapes, ADE20K and PASCAL-Context. Our proposed APD (colored in red) consistently
outperforms other methods throughout the training process. The teacher is PSPNet with ResNet-101 and the student is PSPNet wit!
ResNet-18.

teacher is with a larger capacity add  ds, teacher's projector TABI__E 2: Performa_nce comparison with state-of-the-art methods
P, is required to compress the dimensionfaf from d; to ds, ©N Cityscapessal with PSPNet [54] and DeepLab-V3 [3]. RN,

matching that of the student feature. Therefore, the structure MN2 and EN represent ResNet [9], MobileNet-V2 [30] and
of Pyisas:[d ds! ReLU! ds ds], and the structure of EfcientNet [33] respectively. Models with RN-18are trained

Piis:[ds ds! ReLU! ds ds]. Then, the projected featuresWith 512 512 crop size, and the others are trained with3 713

arel-2 normalized for calculating the cosine similarity.
The semantic segmentation models are built upon Sem-

crops following PSPNet [54].

seg [52]. Student models are trained following the default con- rethgds ;,:Clkslone ;’;Eget Diga"?ab'vs
guration of PSPNet [54] except for the initial learning rate and Sfa; etrl it T e
batch size because PSPNet uses 8 GPUs by default while we use KD RN-18 7481 7367
4 GPUs for training. Speci ¢ epoch numbers, initial learning rates + SKD RN-18 74.56 74.03
and training patch sizes used for different datasets are summarized + 'CF;/gACE RRNI\ilfs 774415?0 77‘14931
. . .. . . + - . .
in Table 1. SGD is used for optimization. ngght decay and + KA RN-18 7459 74.87
momentum are set to 0.0001 and 0.9 respectively. The poly +0urs RN-18 75.68 75.45
learning rate decay [3] is used by multiplying the initial learning Student-1I RN-18* 73.20 74.19
) current _iter ) +KD RN-18* 73.33 74.53
rate with (1 W)po‘”e' , wherepower is set to 0.9. + SKD RN-18* 73.40 74.00
All models are optirmizéd without OHEM. As for the teacher, +IFVD RN-18* 73.63 r4.41
. . . - +CSCACE  RN-18* 72.98 74.46
since the feature generator and classi er are xed during training, + KA RN-18* 74.18 73.82
only the projectoP; requires gradient$?; is optimized by Adam +0urs RN-18* 74.77 75.14
optimizer with initial learning rate 1e-5 and beta (0.9, 0.99), which Student-IlI MN2-1.0 71.34 71.40
generalize well on all datasets without additional tuning. Both + KD MN2-1.0 71.91 71.94
SKD [20] and IFVD [39] incorporate a GAN loss to accomplish +SKD Mn2-1.0 72.40 7134
U lsvlandl _ p phish +IFVD MN2-1.0 72.94 70.79
holistic distillation, while the proposed APD does not adopt this +CSCACE  MN2-1.0 72.56 71.92
strategy during training. + KA '\ﬂ/INN22'11-0 ;1-01 ;i-i‘?
Data augmentation includes mirroring, re-scaling from 0.5 St+doutrslv = B'O 0 72'632 71'54
fand 2.0, and random rotation from -10. tp 10. degrees. Finfil]y, EEB' EN:BO 7332 7255
image patches are cropped from the original images as training + SKD EN-BO 73.45 69.47
samples. During evaluation, following the of cial implementation + '('::;/CDACE EENI\-IBE?O 7744455 7723-’9235
.y . . . + - . )
of _P_SPNet [54]_, thg sliding window |nfe_rence s_trategy WIFh the + KA EN-BO 73.83 7261
training crop size is adopted for experiments in semantic seg- +0urs EN-BO 75.79 74.92
mentation, and we output the prediction without additional post- Teacher MN2-1.0 7134 71.40
processing (e.g., fully connected conditional random eld (CRF) Student MN2-05 63.34 63.89
[16] and multi-scale testing). All experiments are conducted on +KD MN2-0.5 64.60 66.03
PyTorch with four NVIDIA GTX 2080Ti GPUs, and results are :ﬁ:'i/% MNszgg gg-gf gg-?g
obtained ywthout 'alterlng the orlglqal labels. We will make our + CSCACE  MN2-05 6531 66.82
code publicly available for reproducing all experimental results in + KA MN2-0.5 64.64 66.06
this paper. + Ours MN2-0.5 67.28 67.58

5.3 Comparison with State-of-the-art

In this section, we show quantitative and qualitative compargtatistical comparisons. As shown in Table 2, we make com-
son with recently proposed methods SKD [20], CSCACE [24parison between the teacher PSPNet-R101 and student models on
KA [10] and IFVD [39]. For a fair comparison, we reproducdlifferent backbones, i.e., ResNet-18 [9], MobileNet-V2 [30] and
these methods in the same training and testing settings as BficientNet [33]. Since our method enables models to form new
method. local perspectives that mine extra useful information, the proposed
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TABLE 3: Efciency comparison on Cityscapetest Teacher TABLE 5: Cross-model distillation results on Cityscapes with
model is PSPNet [54] with ResNet-101. RN, MN2 and ENPSPNet [54] and DeepLab-V3 [3]. RN, MN2 and EN represent
represent ResNet [9], MobileNet-V2 [30] and Ef cientNet [33]ResNet [9], MobileNet-V2 [30] and Ef cientNet [33] respectively.
respectively. PSPNett DL-V3 means the teacher network is PSPNet and the
student is DeepLab-V3, and vise versa.

Methods testmloU Params (M) FLOPS (G)
ENet [26] 58.3 0.3580 3.612 Method Backbone PSPNet DL-V3 DL-V3! PSPNet
ESPNet [21] 60.3 0.3635 4.422 Teacher RN-101 7815 7847
FCN [31] 63 1345 3339 Student-| RN-18 74.15 74.47
ERFNet 68.0 2.067 25.60 T KD RN-18 7513 7350
ICNet [53] 69.5 26.50 28.30 + SKD RN.18 e 7367
Re neNet 73.6 118.1 525.7 + IFVD RNAS 7543 7429
PSPNet [54] 78.4 70.43 574.9 + CSCACE  RNA18 2493 7433
RN-18 + SKD 72.9 16.31 148.2 + KA RN-18 75.64 7458
RN-18 + IFVD 73.2 16.31 148.2 +0urs RN-18 76.01 75.90
Sm:ig : SCACE 7723é0 116651 11%8'22 Student-1Il MN2-1.0 71.34 71.40
| ; ' + KD MN2-1.0 71.81 71.57
RN-18 + Ours 74.9 16.31 148.2
+ SKD MN2-1.0 72.45 71.74
MN2-1.0 + IFVD 72.0 4.840 39.44 + CSCACE MN2-1.0 71.54 71.80
MN2-1.0 + CSCACE  71.6 4.840 39.44 +KA MN2-1.0 70.82 70.61
MN2-1.0 + KA 711 4.840 39.44 +0urs MN2-1.0 73.22 73.66
MN2-1.0 + Ours 73.5 4.840 39.44 Studentv EN-BO 7230 7154
EN-BO + SKD 73.0 13.44 95.86 + KD EN-BO 72.66 73.73
EN-BO + IFVD 73.6 13.44 95.86 +SKD EN-BO 7929 73.69
EN-BO + CSCACE 73.5 13.44 95.86 +IEVD EN-BO 72.87 74.06
EN-BO + KA 729 13.44 95.86 +CSCACE EN-BO 73.28 74.28
EN-BO + Ours 75.2 13.44 95.86 + KA EN-BO 72.46 73.62
+0urs EN-BO 75.03 75.51
TABLE 4: Performance comparison with state-of-the-art methodsTeacher MN2-1.0 71.34 71.40
using PSPNet on the validation sets of three popular benchmarks3tudent MN2-0.5 63.34 63.89
Cityscapes [6], ADE20K [56] and PASCAL-Context [22]. Teacher 1 KD mg%g 2‘}1‘3 %jjf;
and student models adopt ResNet-101 and ResNet-18 as their; |pyp MN2-0.5 64.27 64.36
backbones. +CSCACE MN2-0.5 65.13 65.04
+ KA MN2-0.5 65.46 64.68
Methods Cityscapes ADE20K PASCAL-Context * Ours MN2-0.5 67.14 66.90
Teacher 78.15 43.44 48.50
Student 74.15 37.19 42.29 o .
+KD [12] 74.81 37.69 42.45 I PSPNet. The cross-model distillation Results are shown in
+ SKD [20] 74.56 37.61 42.53 Table 5. It can be observed that IFVD and SKD may adversely
Ilch/gA[ggE] [24] 77441500 3;7'8590 4422'7;6 affect the performance for cross-model distillation as sometimes
+ KA [10] 74.59 38.06 4313 they may cause performance degradation compared to the results
+0urs 75.68 39.25 43.96 of KD proposed by Hintonet al. [12]. On the contrary, the

proposed method still consistently brings decent performance gain
in the practical cross-model setting.

Adaptive Perspective Distillation qchieves better performanggomparison with validation curves. Qualitative comparison
compared to other methods when different student backbones @i, validation curves is presented in Fig. 5. We note that these
adopted. validation results are obtained from the center regions cropped
We note SKD and IFVD only distill knowledge from anyijth the training patch sizes (i.el73 473for ADE20K [56] and
unchanged global view with a xed classi er of the teacher. It iASCAL-Context [22], an@13 713for Cityscapes [6]), which
via L kg [12] without new perspectives, causing limited knowledgg different from the formal evaluation phase when the sliding
that can be transferred. Contrarily, the proposed method miRgmdows inference strategy is adopted. The center cropping for
extra cues for distillation by creating a new perspective for evefje intermediate validation and the sliding window inference for
single image speci cally, and thus our method consistently yieldge nal evaluation are both implemented according to the of cial
signi cant performance gain to all student models. Besides, isyTorch implementation of PSPNet.
Sec. 5.4, we show that our proposed APD is complementary to From Fig. 5, we can observe that APD consistently outper-
SKD and IFVD. forms other methods by a large margin on both three benchmark
The ef ciency comparison is illustrated in Table 3 with thedatasets throughout the entire training process, which manifests
test mloU results on Cityscapes. We also conduct experimegtig robustness of our method.
with PSPNet on ADE20K and PASCAL-Context to show the
superiority of our method on different datasets. Results are sho
in Table 4.

'ﬁcussion. The proposed Adaptive Perspective Distillation
APD) aims at: 1) letting the student mimic teacher to form local
perspectives that can well describe temporary feature distributions;
Cross-model distillation. To further manifest the generalization2) learning to form similar observations (predictions) based on
ability of the prosed method, we conduct experiments acroee local perspectives (classi ers). In other words, both inter- and
different models, i.e., PSPNét DeeplLab-V3 and DeepLab-V3 intra-class distributions are leveraged by APD to probe more cues
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from individual training samples, and APD attempts to nd dABLE 6: Ablation study on the validation sets of PASCAL-
better distribution descriptor for them. Context and Cityscapes. Teacher is PSPNet with ResNet-101 and
Both SKD [20] and KA [10] exploit the structured informationsStudent is PSPNet with ResNet-18. The rst column denotes the

without explicitly modelling the feature distribution, and theXPeriment 'Di)l&ﬁb uses with soft targetp,, as shown in
difference is that KA adopts an auto-encoder to accomplish knod- (9), whileL ;=% means directly applying Cross Entropy loss
edge transfer on the compressed features, while SKD directly #tPa;s With one-hot hard targets.
the student mimic the raw correlation matrix without the feature.
transformation. Exp. | Lig  Lop L Lrec  Context  City
It is worth noting that the adaptation of KA is different from ! ; - - - 4229 7415
our proposed adaptive perspective . Speci cally, the adaptation : ) ) ) 42.48 7481
mn ! ! - - 43.32 75.27
of KA denotes the use of an auto-encoder that adapts the teacher | ) \ ] 4292 7447
features to a compressed feature space to extract essential inform@- . ' ' '
!
!
!

- - |

tion for distillation. However, the term adaptive perspective in | . | ig:gg 7754_'6682
the proposed APD refers to the local classi er that is conditioned B} I I 43.38 75.32
on the semantic information varying in individual images, serving v | | | 43.87 75.72
as a better feature distribution descriptor for mining additional 1x - ! - ! 43.81 75.70
details during the distillation process. X - - ! - 42.50 74.41

Differently, CSCACE [24] leverages the channel-wise correla-
tion and a pseudo-label based adaptive cross-entropy loss, WiBLE 7: Ablation study of different methods for yieldirg,ec
the experiments show that the results of CSCACE are also less-the validation sets of PASCAL-Context and Cityscapes. ‘Cen-
satisfying that ours. Besides, IFVD [39] only makes use of ther and ‘Pixel’ adopt the alignment between class centers and
intra-class distribution. Though IFVD also adopts cosine similariipdividual pixels respectively. ‘Center & Pixel' combines both.
calculation for capturing the intra-class relation, without the inter-

class reasoning in Egs. (5)-(6) ahgy, IFVD achieves inferior Datasets | Center Pixel Center & Pixel
results compared to APD. Moreover, with an eye towards a better Context 43.96 43.40 44.06
distribution descriptor, APD applids; andL ec to regularize the Cityscapes 75.68 75.21 75.72

teacher and student models respectively. Therefore, the proposed

learning objectives introduces further improvement to IFVD as

shown in Table 8. We note that the hyper-parametef APD is as proved by Exp.1ll & Exp.VI and Exp.IV & Exp.VIl. However,
used for scaling the output of cosine similarity, and it is helpful byithout observation alignmethtop, implementing. rec alone with

making the temporary inter-class distribution more discriminative.kd in Exp.V only slightly improves the performance of Exp.Il.
On the other hand, merely applying observation alignment yia

achieves decent improvement as shown by Exp.Il & Exp.lll. When

Visual comparison. We prgsent the qualitative Comparisorberspectives are recti ed bl rec, L op boOSts performance from
between SKD and IFVD on Cityscapes, ADE20K and PASCALz5 gg from 43.96 as shown in Exp.V & Exp.VI.

Context in Fig. 6 where it is observed that our predictions are |, Eq. (9)
generally better than the others by capturing more local contextyd)y, teacher
information for distillation.

,Pat is used as soft targets to distill knowledge
to student in the proposed APD. An alternative is to
replace the soft targets with one-hot labels, denoteU@%a' in
Table 6, thus Kullback-Leibler divergence in Eqg. (9) equals to the
5.4 Ablation Study standard Cross Entropy Loss. We note that the difference between

. . . . LLocal andL e is that the former is applied to local predictions
In this Section, we rst verify that o, andL ;¢ are important to while the latter is applied tp..

align teacher’s observations and perspectives respectivel .TherE A
9 - ANd Persp : P y- §Soft targets encode the dark knowledge of teacher and are
two projectorsP; and P are introduced during student training, . ) .
. . more informative than one-hot hard labels. Therefore, superior
we show that the improvement brought by, andL ec is not .
- o . erformance has been achievedlby, (Exp.lll & Exp.VI) com-
originated from these additional learnable modules. Besides, weé Local . . o
id itivit Vsis of d to show the robust pared toL ;2°* (Exp.IV & Exp.VIl) in Table 6. While bringing
ob @n ogether in Exp. is comparable to Exp.VI,
provide a sensitivity analysis ofec and to show the robustness ocal . .

of our method. implying that the bene ts ot 53 do not outweigh that ok op.
Effectiveness ofLo, and Lec. The proposed Adaptive Per-Also, by comparing Exp.VI and Exp.VIIl, we can conclude that
spective Distillation (APD) has two componeritg, andLec. the hard one-hot label used h)ngCa' might adversely affect the
Lon accomplishes the alignment between auxiliary predictiod®mowledge transfer that is accomplished by, with the soft
Pat and p,s (i.e., observations) obtained from the adaptivéabels that are more informative [12]. Besides, Exp.IX shows that
perspectives, whileloc recties student viewAg, making it even without the normal KD lodsyq, the proposedl o, andL yec
similar to A; of teacher. Because the adapti%g encodes more still achieve decent improvement compared to the baseline results
speci ¢ semantic details for each image than the x€g the in Exp.l. However, by comparing the results of Exp.ll, Exp.IV and
producedd, s are generally more accurate thag obtained from  Exp.X, LLoca alone does not outperfornisy .
G, as demonstrated in Fig. 3. Results in Table 6 show that In Eq. (8), student’s perspecti¥e; is encouraged to be similar
the observation alignment and perspective recti cation are both A, of teacher by minimizind-,ec between class centers. An
indispensable. alternative way is to apply the pixel-wise alignment betwegn
Different perspectives result in varying observations. Thundf .. in Eqg. (8) instead of the recti cation on class centers. We
perspective recti cation is helpful for the observation alignmertelieve that mimicking local perspectives is conducive in distilling
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Image GT KD IFVD SKD Ours
Fig. 6: Visual comparison on Cityscapes, ADE20K and PASCAL-Context. White regions in GT are ignored during evaluation.

knowledge from teacher to student since the local observatiofsBLE 8: Ablation study on the validation sets of PASCAL-
must be obtained by adaptive perspectives that vary accordfngntéxt and Cityscapes with PSPNet. Teacher is built upon
to the content of individual images, thus the alignment betwe&fSNet-101 and student is with ResNet{l§, andLsyq are the
the adaptive perspectives of teacher and student models may i -class feature variation distillation and payr—mse dl'stlllat!on
optimizeL op. The experimental comparison is shown in Table. F?f FVD and_SKD. We reproduce them according to their of cial
where it is observed that,.. yielded with class centers generalIy'mplemem"‘t'OnSP meansLi, and Lska are applied to the
leads to a better performance than the pixel-wise counterpart, BERiected features . andf .

cause the former directly optimizes the adaptive perspectives that

are later used it o, While the pixel-wise alignment accomplishes BXP- | bkda  Litv  Lska P Lop Lrec Context City
the perspective recti cation indirectly. Moreover, the combination! ! - - - - - 4248 7481
of ‘Center’ and ‘Pixel’ does not bring considerable improvement, " ' : - - 4274 7410
manifesting the necessity of recti cation on class centers. I : : ) ! . . 4302 75.21

\Y ! ! - 44.05  76.50
Effect of projectors P; and Ps. To generalize our method V ! - ! - - - 4253  74.56
to different teacher & student models whose output features ar¥l ! - ! ! - - 4239  74.13
with different channels, we use projectd?s andPs to process VI : - ! boro ! 43.98  75.30

the feature maps of teacher and student to the same channels,
satisfying the requirement of the similarity calculation in Eq. (8).

Otherwise, the perspectives cannot be recti ed. Two projectors fgmnarableo that without projectors as shown in Exp.Il & Exp.Ili
only used for training and are simply discarded during inferencgy,q Exp.V & Exp.VI. Besides, the proposkes. andL o, are still

boosting student models without structural change. complementary to the models implemented with IFVD and SKD,
To show that the improvement &f.oc andL o, is not caused [g)roved by Exp.IV and Exp.VII in Table 8.

by the two additional projectors, we implement SKD and IFV

on the projected features {f andf ,¢) to compare with the Layer number of projector. It is mentioned in Sec. 5.2 that the

performance obtained from the features without projectiop (fprojectors for teacher and student models are both implemented

andf ;). We note thaP; is still optimized byL ; in the following by a 2-layers MLP with an intermediate ReLU activation layer.

experiments for a fair comparison. To investigate the in uence brought by different layer numbers of
Experimental results are presented in Teb¥ehere the results MLP, the experimental results are shown in Table 9 from which we

of IFVD and SKD implemented on the projected features aman observe that the performance is not sensitive to different layer
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TABLE 9: Ablation study of different layer numbers for constructTABLE 12: Comparison on the validation sets of PASCAL-
ing the projectors for teacher and student models on the validatidontext and Cityscapes between cosine similarity and dot product
sets of PASCAL-Context and Cityscapes. The intermediate Relfal observation generation. The teacher is PSPNet with ResNet-

layers are adopted if the layer number is larger than 1. 101 and the student is PSPNet with ResNet-18. Main-Cos
means the main perspective (classi er) adopts cosine similarity for
Datasets | 1 2 3 4 prediction and Adapt-Cos means the adaptive one uses cosine
Context 43.66 43.96 43.76 43.62 similarity. Thus Adapt-Cos can only be adopted by APD.
Cityscapes 75.69 75.68 75.58 75.00
Method Main-Cos Adapt-Cos Context City
TABLE 10: Ablation study of the effects of feature selection Baseline-l (Default) N/A 4229 74.15
(FS) mechanisms on the validation sets of PASCAL-Context Baseline-ll ! N/A 4190  74.25
and Cityscapes. ‘Tea-FS': only teacher’s local observations (pre- KD-I (Default) N/A 4248 7481
dictions) p,, are used for selecting the valid feature vectors _KD-ll ! N/A 42.03  73.77
for semantic anchor generation. ‘Stu-FS”: only student's local APD- 38.04  73.29
observations (predictiong),. are used for determining the valid ~ APD-Il (Default) ! 43.96  75.68
; APD-III ! ! 4324 7531

feature vectors. ‘Tea-Stu-FS’: both teacher’s and student’s lo-

cal observations are adopted, thus the valid feature vectors '];'?ArBLE 13- Diff  val ¢ for the baseli del imol
computingA andAg are ltered by the correcp,, andp, - iierent values of m for tn€ baseline modet imple-

respectively. mented with Main-Cos .

Datasets | w/oFS Tea-FS Stu-FS Tea-Stu-FS = 1=I'm - ‘ 4;%9 4?056 431088 41430 415602
Context 43.96 43.79 43.01 4223 asefine- : : : : :

( KD-Il 4022 4179 4192 4203 4188
Cityscapes 75.68 75.48 75.28 75.01 APD-III 40.99 4315 4309 4324 4311

TABLE 11: Sensitivity analysis with different values ofec and
. Experimental results are obtained on PASCAL-Contexkt the mloU results of their baselines (42.29 and 74.15).

Values| 0.1 1 5 10 20 50 100 Sensitivity analysis. Different hyper-parameters may cause

4332 4354 43.70 43.06 43.05 43.71 43.48 performance variation. Thus we conduct sensitivity analysis in
1= 42.05 42.92 43.79 43.96 43.62 43.36 43.09 Table 11 where the best performance is robust to different values
of ec and1l= within the range of 5-20.

numbers, and the projectors implemented with 2 fully-connect&b Cosine Similarity in APD
layers can achieve satisfying results on both two benchmarks. |n segmentation models, the universal perspedivapplies dot
Necessity of feature selection. In Eq. (4), with the ground Product on the featureb yielded by the feature generat@

truth mask, we directly average the features of teacher and Stuolgpproguce t_he obser_vatlgp = Softmax(f C) = Softmax_
models to yield the semantic anchols and Ag respectively, ICJ cc_)s(f,C)). While, in the p_ropose_d APD’ the_ a_lda_pnve
without considering the correctness of predictions of individuglerSpeCtlveA generate.s observatlorp_ad Via cosine S|m|Iar|ty:
feature vectors. Intuitively, pixels with wrong predicted labelfa = Softmax (Cos(f 5;A)= ). The difference between cosine

might impair the compactness of class centers since their feat @'Ia”ty and dot product is that the former measures the angle
might be far away from that of the correct ones, thus onl etween two vectors and the latter takes both the angle and

incorporating those feature vectors with correct predictions m ya\gmtudes Into account.
be helpful to the nal performance. To probe the effects of thExperimental results. Both cosine similarity and dot product
feature selection mechanism, the results are shown in Table sE&m to be feasible for yielding observation, while we nd that
where three additional feature selection schemes are implemergesine similarity is more suitable for optimizing the objectives of
for comparison. APD (L;ec andL op). Results are shown in Table. Speci cally,

We nd that the feature completeness is more important thdoy comparing models of Baseline and KD , it can be found that
the correctness. Speci cally, merely considering the correctneggplying cosine similarity to the main universal perspedfiee.,
of the teacher’s predictions (Tea-FS) does not signi cantly undevain-Cos) to yield the main predictions, andp; is detrimental
mine the performance since the teacher network has been vielthe overall performance. On the other hand, Main-Cos also
trained and thus the auxiliary predictions are generally correcduses performance deduction on the proposed APD, shown by
during training, retaining the majority. However, when the coeomparing APD-Il and APD-Ill. As for Adapt-Cos that
rectness of the student is leveraged (i.e., Stu-FS and Tea-Stu-E8) only be adopted by the proposed APD, it is necessary for
the results are clearly lower than that of the baseline (w/o FS) aA&D since the performance drops from 43.96 (APD-II ) to 38.04
Tea-FS, showing the fact thtte feature completeness outweigh§ APD-I ) if the adaptive perspective does not exploit the cosine
the feature correctnes®r constructing semantic anchors in ouisimilarity but dot product for yielding the auxiliary observations
proposed distillation method. The information lost caused by tig, andp,.
feature selection should take responsibility for performance deduc- In summary, through the experiments in Tab® we empiri-
tion of Stu-FS and Tea-Stu-FS, especially on PASCAL-Contegally nd that the dot-product is more suitable for the universal
where the student model is more likely to make wrong predictioperspective (i.e., normal classi er) and the cosine similarity is
than that on Cityscapes, as manifested by the discrepancy betwieetter for the proposed adaptive perspective.
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TABLE 14: Object detection results on COCO 20da.

Method Backbone Schedule \ mAP AP 59 AP 75 AP AP AP,
Teacher ResNet101 - | 42.04 62.48 45.88 25.22 45.55 54.60
Student ResNet18 1x 33.26 53.61 35.26 18.96 35.68 43.16
KD [12] ResNet18 1x 33.68 54.10 35.93 19.65 36.17 43.22
FitNet [28] ResNetl18 1x 34.13 54.16 36.71 18.88 36.50 44.69
SSD [2] ResNet18 1x 33.89 53.35 36.46 18.59 36.20 44.43
FGFI [37] ResNet18 1x 34.16 54.43 36.60 18.79 36.57 44.97
OFD [11] ResNet18 1x 33.36 53.34 35.60 18.61 35.53 43.87
SKD [20] ResNetl18 1x 33.97 54.66 36.62 18.71 36.67 44.14
IFVD [39] ResNet18 1x 34.20 54.63 36.66 19.16 36.65 44.71
FBKD [51] ResNet18 1x 35.20 55.20 38.30 18.80 37.90 47.80
CWD [32] ResNet18 1x 35.40 54.60 38.50 18.20 38.20 49.00
Ours ResNet18 1x 35.47 56.68 38.00 20.41 38.17 46.14
Student ResNet18 2X 35.13 55.40 38.20 19.66 37.81 45.13
KD [12] ResNet18 2x 35.56 55.56 38.58 19.43 38.88 47.09
FitNet [28] ResNet18 2X 35.64 55.23 38.64 19.52 38.75 46.27
SSD [2] ResNet18 2X 35.60 55.27 38.60 20.22 37.97 46.95
FGFI [37] ResNet18 2X 35.93 56.41 38.72 19.86 38.14 46.41
OFD [11] ResNetl18 2X 35.49 55.68 38.17 19.71 38.01 47.01
SKD [20] ResNet18 2X 35.56 56.04 38.55 19.99 38.18 45.98
IFVD [39] ResNet18 2X 35.87 56.58 38.59 20.65 38.56 46.20
FBKD [51] ResNet18 2X 37.00 57.20 39.70 19.90 39.70 50.30
CWD [32] ResNet18 2X 37.00 56.70 40.20 19.40 40.30 50.40
Ours ResNet18 2X 37.08 57.99 40.13 21.59 39.88 48.38
Teacher ResNet50 - \ 40.22 61.02 43.81 24.16 43.53 51.98
Student MobileV2 1x 29.47 48.87 30.90 16.33 30.77 38.86
KD [12] MobileV2 1x 30.13 50.28 31.35 16.69 31.91 39.56
FitNet [28] MobileV2 1x 30.20 49.80 31.69 16.39 31.64 39.69
SSD [2] MobileV2 1x 29.96 48.76 31.65 16.51 31.56 39.75
FGFI [37] MobileV2 1x 30.27 49.87 31.60 17.03 31.82 40.06
OFD [11] MobileV2 1x 29.73 48.39 31.67 16.26 31.63 39.29
SKD [20] MobileV2 1x 31.52 50.72 33.35 17.66 33.52 40.75
IFVD [39] MobileV2 1x 30.67 50.30 32.43 17.09 33.62 38.38
FBKD [51] MobileV2 1x 32.20 52.80 33.70 18.00 34.50 43.80
CWD [32] MobileV2 1x 31.20 49.00 33.30 14.70 32.60 44.00
Ours MobileV2 1x 32.58 53.23 34.41 19.12 34.66 42.35

TABLE 15: Instance segmentation results on COCO 2@dl7The results are measured in box mAP and mask mAP.

Method Backbone | mAP PX  mAp mask  apmask  ppmask  ppmask  ppmask  Ap mask
Teacher ResNet10] 42.90 38.63 60.45 41.28 19.48 41.33 55.29
Student ResNet18| 33.98 31.25 51.07 33.10 14.18 32.80 45,53
KD [12] ResNetl8 | 34.53 31.66 51.85 33.59 14.80 33.38 45.73
FitNet [28] ~ ResNet18| 34.69 31.75 51.46 33.82 14.50 33.25 46.76
SSD [2] ResNetl8| 34.17 31.10 50.59 32.92 14.14 32.40 45.84
FGFI[37]  ResNetl8| 34.73 31.85 51.59 33.72 14.95 33.25 46.94
OFD[11]  ResNetl8| 34.29 31.56 51.02 33.31 14.19 32.73 46.59
SKD[20]  ResNetl8 | 34.53 31.62 51.90 33.54 14.48 33.44 46.10
IFVD[39] ResNetl8 | 34.59 31.64 52.06 33.38 14.93 33.49 46.34
FBKD[51] ResNetl8 | 35.40 32.10 52.50 34.00 14.20 3410 48.10
CWD[32] ResNetl8| 35.60 32.50 52.00 34.70 1570  35.00 46.10
Ours ResNet18| 35.90 32.84 53.70 34.71 15.77  34.79 47.81

Analysis. The performance discrepancy between Main-Cosfor those features with low magnitude. Also, the magnitude values
and Adapt-Cos might be related to the formation processes of features belonging to the same category vary in different
the universal perspective that is shared by all training images anthges due to the varying co-occurrent contextual information.
the adaptive perspective that is created individually. The shar€dus we instead only focus on the semantic relation by adopting
universal perspective approaches to an optimal magnitude by websine similarity to alleviate the issues caused by the magnitude
tting the entire training set. The magnitude values of featurdastability of the adaptive perspective that is formed merely based
serve as additional descriptors, revealing more information fon individual samples.

individual feature vectors. Therefore, the universal perspective, Besides, it is worth noting that, since the purposes of Main-
with well-learned class-wise magnitude, achieves better peer‘fos and Adapt_Cos are diﬁerent, we have Carefu"y tuned the
mance by adopting the dot product. However, the magnitude Wlues of the scaler,, for Main-Cos to have a fair comparison
the adaptive perspective is determined by the individual featufgth Adapt-Cos in Table 12. Specically, according to the
map and thus the magnitude might be biased towards the featsé@sitive analysis in Table 11,0f Adapt-Cos is set to 0.1 (i.e.,
vectors with large magnitude, causing inappropriate representatieh = 10) , while directly applying m = 0:1 to Main-Cos
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signi cantly worsens the performance as shown in Table 13 whettee SKD loss on the features after the FPN structure with a 2 2

1= =40 (i.e., m = 0:025) achieves the best performancedown-sampling, following its default con gurations. However,
Thus models with Main-Cos in Tabld2 are implemented with since class labels are required by IFVD, we apply the IFVD loss

m = 0:025. on the features after the Rol Align operation. Our code for object
detection will also be made publicly available.
5.6 Extensions Results. We summarize our results on COCO [18] with the

Although our method is motivated from the perspective of sé&aster-RCNN-FPN [27] detector in Table 14. We re-implement the
mantic segmentation tasks, it also generalizes well to the taskassic distillation methods KD and FitNet, as well as one recent
of object detection and instance segmentation. Implementatimethod FBKD [51] that achieves state-of-the-art performance

details and results are presented as follows. for distillation in object detection. Moreover, to comprehensively
_ _ compare with the methods in semantic segmentation, we also
5.6.1 Object Detection apply SKD and IFVD to the object detection task, since both

Implementation details. We use the most popular Fastersegmentation and detection tasks require structured dense pre-
RC?NN FPNId tect , .D tect u 2 1401 with d'f-fp putb kb diction. It can be observed in Table 14 that our method still
i etector in Detectron2 [40] with different bac One(§utperf0rms most of the other methods by a large margin on

as our strong baselines. We use the standard training pohcgﬁg detection task, including SSD and FGFI that are speci cally

pr.oyldeid |ndD|etgctron2 excegts for th.e r:jumper of GPUs. TE}%signed for detection. Besides, the proposed method achieves
opg.ma mode’s DeFectron are traine L!S'ng.S GPl.JS' Tc%mparable results to the recent state-of-the-art distillation method
0 cial 1 training policy is tc_) train 90000 _|te_rat|0ns with 16in object detection (i.e., FBKD). These results further demonstrate
images per batch. The learning rate is initialized as 0.02 a de effectiveness and generalization ability of our method.

decayed by 10 at 60,000 and 80,000 iterations. The baseline an e present the qualitative comparison between SKD and

other models are trained on 4 GPUs, thus we halve the batch ﬁE@D on COCO2017val set in Fig. 7 where it is observed that
to 8 and double the total iterations to 180,000. The initial Iearnin&r predictions are generally better than the others.

rate is 0.01 and it decays by 10 at 120,000 and 160,000 iterations.
Our reproduction yields similar baseline performance and costs 16 2  Instance Segmentation

same overall GPU time. We use the standard multi-scale trainij@ fyrther adapt our method to the instance segmentation task on
augmentanons. The input images are randomly re§|zed to onecAhco 2017 dataset. Instance segmentation is a more challenging
the S'ZeSf640,’ 672, 704’ 736' 768, 8099”0' then images are i, aiming to segment every object in each image. The Mask-
randomly horizontal iped with a probability of 0.5. We do NOT g with FPN in Detectron?2 is adopted as our baseline. The

use any augmentations during the inference. training process of instance segmentation is similar to that of

We apply the proposed APD to the features after the Rol Aligf}yq o+ getection, following the standard training policies provided
operation. We simulate the scenario in the semantic segmentagiom . c =

tasks and assume every feature vector in the feature map belongsrq results are summarized in Table 15 where our method

to the class of the corresponding proposal. Then we considef, yes the results of instance segmentation task by a large

all proposals in a mini-batch as a whole and generate adaptiyg gin while the other related methods barely improve the

perspectives in a batch-wise manner. , baseline performance. The challenging instance segmentation task
We reimplement the KD loss proposed by Hin®@nal.on the ¢, 1her demonstrates the superiority of our proposed method. The

logits of the classi cation branch in the Rol head. The loss Weiglaﬁjalitative comparison on COCO2043 set is shown in Fig. 7.
is also set to 10. We notice that, in object detection, the teacher

and student may have different proposals, causing a mismajch
between the features after the Rol Align operation as well as CONCLUSION
the nal predicted logits. To address this issue, since only tH&e have presented the proposed Adaptive Perspective Distillation
student’s proposals are used for generating the nal task losseAPD). Different from the previous distillation methods that distill
we let the teacher network adopt the proposals yielded by tk@owledge via pixel-wise predictions obtained by the xed per-
student, thus the teacher’s features and logits are aligned with thgctive (i.e., classi er), APD aims at creating adaptive perspec-
of the student. tives for individual samples, revealing more details on the encoded
SSD [2] and FGFI [37] are the distillation methods speci callfeature for helping student models achieve better performance.
designed for object detection. However, the baseline methods uééP has no structural constraints on the base model and thus
by them are relatively weaker than the popular ones. So we f&n be easily applied to normal semantic segmentation frame-
implement SSD and FGFI on our stronger baseline accordingWrks. APD is also complementary to other existing knowledge
the paper or the of cial code provided by the authors. OFD [11] idistillation methods in segmentation. The extensive comparison
another distillation method that improves the student detector Wjth state-of-the-art knowledge distillation methods for semantic
proposing a marginal loss to leverage BN's information to guioq.ggmentation demonstrate the effectiveness and generalization
the distillation process. Also, we make a comparison with tibility of APD.
recent state-of-the-art distillation method named FBKD [51] that
adopts the attention guided and non-local distillation on detectoFREFERENCES
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
Since object detection is also a task of dense prediction, we deep convolutional encoder-decoder architecture for image segmentation.
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