Compositing-aware Image Search — Supplementary Material

Hengshuang Zhao1⋆, Xiaohui Shen2, Zhe Lin3,
Kalyan Sunkavalli3, Brian Price3, Jiaya Jia1,4

1The Chinese University of Hong Kong, 2ByteDance AI Lab,
3Adobe Research, 4Tencent Youtu Lab
\{hszhao,leojia\}@cse.cuhk.edu.hk, shenxiaohui@bytedance.com,
\{zlin,sunkaval,bprice\}@adobe.com

1 Dataset Statistics

\textbf{Training Set} The training set statistics are shown in Table 1. Some datasets do not have annotations for certain categories, i.e., there are no ‘dog’ from ADE20K \cite{review1} and no ‘painting’ from MS-COCO \cite{review2} and PASCAL VOC 2012 \cite{review3}. Also, MS-COCO has already contained sufficient ‘person’ instance masks, and therefore we exclusively use the ‘person’ instances from MS-COCO for training.

\textbf{Evaluation Set} Each category has 10 background images with various scenes downloaded from Flickr1. And for candidate foreground objects, we utilize object instance masks from validation set of MS-COCO \cite{review2}, PASCAL VOC 2012 \cite{review3} and ADE20K \cite{review1}. The statistics are shown in Table 2.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Category} & \textbf{MS-COCO} & \textbf{VOC 2012} & \textbf{ADE20K} & \textbf{All} \\
\hline
boat & 2527 & 475 & 229 & 3231 \\
\hline
bottle & 3385 & 511 & 193 & 4089 \\
\hline
car & 7002 & 1095 & 3382 & 11479 \\
\hline
chair & 10883 & 1530 & 6708 & 19121 \\
\hline
dog & 2910 & 1291 & - & 4202 \\
\hline
painting & - & - & 2962 & 2962 \\
\hline
person & 38418 & - & - & 38418 \\
\hline
plant & 2805 & 493 & - & 3298 \\
\hline
\end{tabular}
\caption{Training set statistics. Number of training images of each category in different datasets. ‘-’ stands for no images are chosen from the related dataset.}
\end{table}

⋆This work was partly done when H. Zhao was an intern at Adobe Research.
1 https://flickr.com
Table 2: Evaluation set statistics. The second column stands for total number of foreground candidates of each category in the evaluation set. Column 3 to 12 stand for number of ground truths or positive foreground candidates of each background.

<table>
<thead>
<tr>
<th>Category</th>
<th>all</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>boat</td>
<td>144</td>
<td>63</td>
<td>44</td>
<td>73</td>
<td>72</td>
<td>83</td>
<td>63</td>
<td>51</td>
<td>29</td>
<td>66</td>
<td>41</td>
</tr>
<tr>
<td>bottle</td>
<td>204</td>
<td>109</td>
<td>109</td>
<td>97</td>
<td>106</td>
<td>36</td>
<td>118</td>
<td>133</td>
<td>104</td>
<td>99</td>
<td>4</td>
</tr>
<tr>
<td>car</td>
<td>244</td>
<td>43</td>
<td>37</td>
<td>31</td>
<td>17</td>
<td>42</td>
<td>49</td>
<td>30</td>
<td>21</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>chair</td>
<td>249</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>33</td>
<td>19</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>dog</td>
<td>322</td>
<td>196</td>
<td>196</td>
<td>193</td>
<td>71</td>
<td>137</td>
<td>136</td>
<td>171</td>
<td>95</td>
<td>68</td>
<td>147</td>
</tr>
<tr>
<td>painting</td>
<td>114</td>
<td>28</td>
<td>34</td>
<td>27</td>
<td>24</td>
<td>23</td>
<td>11</td>
<td>34</td>
<td>35</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>person</td>
<td>364</td>
<td>51</td>
<td>94</td>
<td>12</td>
<td>79</td>
<td>61</td>
<td>19</td>
<td>25</td>
<td>97</td>
<td>69</td>
<td>38</td>
</tr>
<tr>
<td>plant</td>
<td>140</td>
<td>9</td>
<td>102</td>
<td>22</td>
<td>35</td>
<td>64</td>
<td>55</td>
<td>16</td>
<td>48</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

2 More Qualitative Results

Visual Search Results We show more visual search results in Fig. 1, Fig. 2 and Fig. 3. Compared to RealismCNN, shape information and classification features, the returned results of our approach contain more compatible foregrounds for image compositing.

Generalization to New Categories To further exhibit the representation ability of our learned shared feature across multiple classes, we test our method on new categories that have not been trained. The search results are illustrated in Fig. 4. Even without training on the new classes, our system still works reasonably well.

Foreground Similarity We essentially learned new feature representations to measure image similarity using image compositing as a proxy in a self-supervised manner. The learned features can not only be used for image compositing, but can also be applied in other search scenarios, e.g., finding similar foregrounds from a query foreground using our learned foreground features. Some visual results of this task are shown in Fig. 5 and Fig. 6. We can see our features can capture more finegrained similarity in semantics, shape and pose, benefiting from the rich information learned through compositing.

References
Compositing-aware Image Search

(a) Compositing-aware image search for ‘boat’

(b) Compositing-aware image search for ‘car’

(c) Compositing-aware image search for ‘dog’

(d) Compositing-aware image search for ‘person’

Fig. 1: Visual search results. In each example, the yellow box indicates the position of foreground object to be inserted. The 1st to the 4th rows show the retrieved results using RealismCNN, shape information, classification features and our approach, respectively. The text boxes with ‘green’ and ‘red’ color in the top left corner of the foregrounds represent ‘positive’ and ‘negative’ foregrounds respectively. Our returned results contain more compatible foregrounds for image compositing.
Fig. 2: Visual search results. In each example, the yellow box indicates the position of foreground object to be inserted. The 1st to the 4th rows show the retrieved results using RealismCNN, shape information, classification features and our approach, respectively. The text boxes with ‘green’ and ‘red’ color in the top left corner of the foregrounds represent ‘positive’ and ‘negative’ foregrounds respectively. Our returned results contain more compatible foregrounds for image compositing.
Fig. 3: Visual search results. In each example, the yellow box indicates the position of foreground object to be inserted. The 1st to the 4th rows show the retrieved results using RealismCNN, shape information, classification features and our approach, respectively. The text boxes with ‘green’ and ‘red’ color in the top left corner of the foregrounds represent ‘positive’ and ‘negative’ foregrounds respectively. Our returned results contain more compatible foregrounds for image compositing.
(a) Search for new category ‘bus’

(b) Search for new category ‘suitcase’

(c) Search for new category ‘cow’

(d) Search for new category ‘sheep’

(e) Search for new category ‘cat’

Fig. 4: Generalization to new categories.
Fig. 5: Measuring foreground similarities. The leftmost one marked with blue box is the query foreground. In each case, the top row are the search results using ResNet50 classification features, and the bottom one are our results.
Fig. 6: Measuring foreground similarities. The leftmost one marked with blue box is the query foreground. In each case, the top row are the search results using ResNet50 classification features, and the bottom one are our results.