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Patch-based Separable Transformer for Visual
Recognition

Shuyang Sun, Xiaoyu Yue, Hengshuang Zhao, Philip H.S. Torr, Song Bai

Abstract—The computational complexity of transformers limits it to be widely deployed onto frameworks for visual recognition. Recent
work [9] significantly accelerates the network processing speed by reducing the resolution at the beginning of the network, however, it
is still hard to be directly generalized onto other downstream tasks e.g. object detection and segmentation like CNN. In this paper, we
present a transformer-based architecture retaining both the local and global interactions within the network, and can be transferable to
other downstream tasks. The proposed architecture reforms the original full spatial self-attention into pixel-wise local attention and
patch-wise global attention. Such factorization saves the computational cost while retaining the information of different granularities,
which helps generate multi-scale features required by different tasks. By exploiting the factorized attention, we construct a Separable
Transformer (SeT) for visual modeling. Experimental results show that SeT outperforms the previous state-of-the-art transformer-based
approaches and its CNN counterparts on three major tasks including image classification, object detection and instance segmentation.

Index Terms—Transformer, Image Classification, Object Detection, Instance Segmentation
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) [14], [25], [36] have
been dominating nearly all vision tasks since the emergence
of AlexNet [25]. However, CNN has been proven to be less
effective when applied on some other sequential data like
natural language, where the attention-based Transformers
[42] serve as the most popular feature extractor. The atten-
tion model like Transformer [42], due to its data-adaptive
nature, conceptually have a larger capacity and preserve the
translational equivariance [31], [52]. These properties imply
the potential of attention-based models as a better engine
for vision tasks.

Existing attention-based networks [9], [19], [31], [52]
cannot be practically transferred onto downstream tasks due
to the computational and memory inefficiency [19], [52] or
the lack of multi-scale features [9], [41]. These attention-
based models can be roughly divided into two kinds, (1)
token-based global attention [9], [41] and (2) convolution-
like local attention [19], [31], [52]. To save the computational
and memory cost, Vision Transformer (ViT) [9] as a typical
representation of the token-based approach, proposes to
summarize all pixels of independent patches into global
visual tokens before feeding them into the Transformer
encoder. However, as human vision knows when and how
to capture the information at the highest resolution, an ideal
visual processor should be capable to analyze both the local
and global information at the same time. Visual modeling
without interacting with the local information is counter-
intuitive. As a consequence, the lack of local information
modeling in ViT results in data-inefficiency and limited
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Fig. 1. Left: Vision Transformer (ViT) [9] directly projects all pixels of each
patch into global tokens and applies self-attention afterwards. Middle:
the full spatial attention (a.k.a. Non-local [44] block) takes all pixels of
an image as inputs so that it will have huge memory and computational
cost when the resolution is high. Right: our SeT factorizes the full spatial
attention into (1) a pixel-wise attention that only interacts with local pixels
of each patch and (2) a patch-wise attention that reasons the global
relationship between patches.

transferability to downstream tasks that call for multi-scale
features.

As for the local attention, although existing convolution-
free networks [19], [31], [52] based on the pyramid archi-
tecture are data-efficient and could (conceptually) be trans-
ferable to downstream tasks, all these works only propose
local attention within their building blocks, which limits
the model in capturing long-range global visual patterns.
Besides, they are still memory-expensive, or too slow due to
the incompatibility with the modern hardware accelerator,
or both. Such inefficiency also prevents them to be widely
deployed for other downstream vision tasks that may need
to process images of way larger resolutions.

The aim of this work is to construct a practical
transformer-based network with strong performance and
transferability to down-stream tasks so that it can be used
as an alternative to conventional CNN. To this end, the
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network needs to take advantages of both local and global
interactions. As shown in Figure 1, similar to ViT (Figure 1
left), we divide the entire image into N patches. However,
instead of projecting all pixels of each patch into global
tokens, we first query the pixels of each patch locally
with their close neighbors using the pixel-wise multi-head
attention. After the local pixel-wise interaction, the spatial
information of each patch will be gathered, so that the
patch-wise attention can use them to infer the correlation
among patches. The whole process can be also regarded as
a spatial factorization of the original full spatial attention
(a.k.a. Non-local [44] block in Figure 1 middle). Therefore we
name it as Separable Transformer (SeT). Such factorization
largely reduces the memory cost compared to the full spatial
attention so that both local and global attention can be
practically applied even on large feature maps. In summary,
the contribution of this paper is three-fold:

1) By factorizing the full spatial attention into local pixel-
wise attention and patch-wise attention, SeT is the first
transformer-based architecture retaining both local and
global interactions throughout the network.

2) SeT achieves state-of-the-art performance compared
with existing transformer-based architectures. Besides,
SeT can be well transferred onto other downstream
tasks like object detection and instance segmentation.

3) We also reveal that the it is the global interaction that
makes the token-based transformers to be unfriendly
towards convergence. By enhancing the locality of the
transformer, SeT can be more data-efficient compared to
the token-based approaches e.g. ViT [9] and DeiT [41].

2 RELATED WORK

Convolutional neural networks. Conventional CNNs have
dominated the field of computer vision. After the great
success of AlexNet [25] for image classification, lots of fol-
lowing powerful convolutional architectures are developed
for image recognition [14], [21], [30], [40]. They serve as the
basic backbones for various downstream computer vision
tasks, such as semantic segmentation [1], [53] and object
detection [11], [12], [13], [33].
Transformers and self-attention mechanisms for visual
recognition. With the success of Memory Networks [38]
and Transformers [42] for natural language modeling, lots of
works in the field of computer vision attempted to migrate
similar self-attention mechanism as an independent block
into CNNs for image classification [2], [4], [20], [45], object
detection [3], [18], [37] and video prediction [23], [44] etc.

Recent works tried to replace all convolutional layers
in neural networks with local attention layers to build up
self-attention based networks [5], [15], [18], [31], [50], [52].
Though these works are proven to be successful in improv-
ing performance while reducing the network complexity in
terms of FLOPS and the number of parameters. The memory
cost and runtime latency of these models are still very higher
than the conventional CNNs, which prevents them to be
widely deployed for practical use. To mitigate this problem,
the Vision Transformer (ViT) [9] chose to largely reduce the
image resolution and only retain global information while
processing. The success of such radical change on image
modeling is surprising but the downside is also obvious.

Compared with other existing models, ViT requires much
more training data for generalization and the results are
still worse than the state-of-the-art CNN counterparts e.g.
[30], [40] when both models are well-tuned on ImageNet.
Some concurrent works like Swin Transformer [28], PVT [43]
and MViT [10] use either local attention or global attention
for feature extraction. Another concurrent work ViL [50]
propose both global and local interactions within its struc-
ture, which is the most similar work to ours. However, its
local attention is a convolution-like self-attention with dense
sliding window like [19], [31], [52], which will lead to very
high computational latency as we discussed above. Unlike
the listed works above, as a transformer-based network, our
model can do both local and global attention simultaneously
as we cut down the computational cost via spatial grouping.
Task-specific transformers. In addition to the transformer
based architectures designed for image recognition, there
are also task-specific transformer-based architectures as the
transferability of the current transformer is still limited.
Specifically, DETR [3] and its variant Deformable DETR [55],
UP-DETR [8], Sparse RCNN [39] are designed specifically
for object detection and instance segmentation. What pro-
posed in this paper is independent to these works as we
intend to build up a versatile transformer-based network
that can be directly transferred onto other down-stream
tasks as the engine for extracting features.
Kernel factorization methods. Recent works design differ-
ent efficient CNN architectures by factorizing the convolu-
tions on the channel [17], [35], [46], [51], or spatiotemporal
dimension [47]. Our patch-based separable attention also
takes advantage of the grouping concept, but it is applied
to spatial dimension instead. Going beyond the spatial
grouping, we also introduce to enlarge the reference scope
of the key and value so that pixels within the pixel-wise
attention can have a larger field of view and learn to model
long-range interactions.

3 PATCH-BASE SEPARABLE TRANSFORMER

The patch-based Separable Transformer (SeT) is primarily
composed of two sub-modules, the pixel-wise attention for
extracting local features, and the patch-wise attention for
reasoning the global interactions.

3.1 Overview

SeT can be regarded as a variant of the traditional Trans-
former Encoder. The basic building block of SeT is exhibited
in Figure 2. Given an input image x ∈ RC×H×W , the
whole image is first divided into N query patches with
no overlapping in between. The patch size of each patch
is K × K , so that N = HW

K2 . Note that if HW cannot be
exactly divided by K2, then we will apply zero padding
to the input and mask it out like [3], [31] in the lateral
self-attention modules. Apart from these non-overlapping
patches, we further crop N reference patches with a larger
patch size (K + 2O) × (K + 2O) and step size K, so
that each pixel within the query patch, especially those
at the patch boundary, can refer to a wider neighborhood
like convolution. The prepared query patches and reference
patches will be parallelly sent into SeT for processing.
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Fig. 2. Overview of SeT. Li is the number of blocks of stage i. Here we
show an example when K = 3, O = 1.

Before being sent to the self-attention modules, all pixels
on the feature map will be first transformed by a linear
operation. The linear transformation will not change the
spatial size of each patch, instead, it maps the C channels
of each pixel into D = C/B, which can be viewed as a
bottleneck design with B× channel reduction like [14]. The
transformed features will be then fed into the pixel-wise
separable attention. Following the query-key-value formula-
tion of the original multi-head self-attention, here in the
pixel-wise attention, features of the query patch serve as the
query and those of the reference patch serve as the key and
value. We adopt the grouping concept in [42], [46] which
applies independent groups of weights to generate attention
maps. The output of the pixel-wise attention are still patches
with local features corresponding to a specific part of input.
Therefore a linear projection is needed to squeeze the spatial
dimension of each patch into 1 so that each patch is gathered
as a visual token. These visual tokens will serve as the
ingredients of the patch-wise separable attention for global
reasoning. In this way, both the local and global information
are modelled by SeT.

Following [42], skip connections are applied from the
input to the output of the separable attention module.
We simplify the original feed-forward layer into a single
linear transformation followed with normalization after the
identity mapping. The transformed feature will be added to
the input of the block to generate the final output of the SeT
building block.

3.2 Pixel-wise Separable Attention

Pixel-wise separable attention make pixels of each patch
interact with their close neighbors. All pixels xp ∈ RK2×D

of a specific patch p share a same neighborhood xp
n ∈

R(K+2O)2×D . Given three learnable linear transformation
with weights Wq,Wk,Wv , we obtain three variables q, k, v
representing the query, key and value of the self-attention.
Note that q ∈ RK2×D is generated using contents in the
query patch xp while the k, v ∈ R(K+2O)2×D are linear
transformations of the content of the reference patch xp

n.
Following [2], [31], [37], a learnable relative positional em-
bedding r ∈ R(K+2O)2×D is applied to capture the location
information, in this way, the attention affinity matrix M can
be calculated as:

q = xpWq,

k = xp
nWk,

v = xp
nWv,

M = q · kT + q · rT ,

(1)

where M ∈ RK2×(K+2O)2 represents the correspondence
between every pixel in the query patch to pixels in the
reference patch. Following the common practice, we further
apply a softmax normalization on the matrix by:

Mi,j =
1√
D

eMi,j∑
l e

Mi,l
. (2)

A normalization factor 1√
D

is set here to prevent the output
distribution of softmax to be one-hot. The matrix M repre-
sents the affinity matrix between pixels of the query patch
and the reference patch. We can aggregate the values in v
using M by:

yp = M · v, (3)

where yp ∈ RK2×D represents the output of each head of
the pixel-wise separable attention. Following [42], the above
process can run in multiple heads in parallel. The output of
each head will be stacked together as the final output.

3.3 Patch-wise Separable Attention

Patch-wise separable attention intends to update all pixels
within each patch with the inferred correlation with other
patches. Given y = {y1, ..., yN} ∈ RN×K2×D , we first
normalize y with a BatchNorm [22] layer, then apply a linear
transformation to all K2 pixels of the patch that maps K2

dimension into 1, which is identical to a weighted aver-
age pooling operation. Denote the down-sampled output
as yd ∈ RN×D , and reshape y to NK2 × D. Similar to
the formulation of the pixel-wise separable attention, we
denote the linear transformations and their weights for
the patch-wise separable attention as q′ ∈ RNK2×D and
k′, v′ ∈ RN×D and Wq′ ,Wk′ ,Wv′ , then the attention matrix
can be formulated as:

q′ = yWq′

k′ = ydWk′

v′ = ydWv′

M ′ = q′ · (k′)T + q′ · (r′)T ,

(4)
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TABLE 1
General specification for SeT family. Building blocks of SeT are shown

in brackets.

Stage Output
Resolution Block Settings

H
4
× W

4

7× 7, 64, Conv, stride 2
3× 3 Max Pool, stride 2

Stage1 H
4
× W

4

C = 64×B
D = 64
G = 4

× L1

Stage2 H
8
× W

8

2× 2 Avg Pool, stride 2C = 128×B
D = 128
G = 8

× L2

Stage3 H
16
× W

16

2× 2 Avg Pool, stride 2C = 256×B
D = 256
G = 8

× L3

Stage4 H
32
× W

32

2× 2 Avg Pool, stride 2C = 512×B
D = 512
G = 8

× L4

1× 1 1000, Linear

where r′ ∈ RN×D represents the absolute positional embed-
ding for all patches, and M ′ ∈ RNK2×N denotes the affinity
matrix between patches. Then the output of the patch-wise
separable attention can be calculated as:

M ′i,j =
1√
D

eM
′
i,j∑

l e
M ′

i,l

z = M ′ · v′,
(5)

where z ∈ RNK2×D is the final output of the patch-wise
attention. Following [42], we apply skip connections from
the input xp to the output of the attention. Note that the
pixel-wise and patch-wise separable attention can be binded
together or applied independently. When both attention are
applied together, the final output of the entire attention
module is z. If the global separable attention is not applied,
the final output will turn to be y. In Section 4, we will
compare both effect of applying the two separable attention
modules.

3.4 Computational Cost of Separable Attention

The factorization above reduces the computational cost
compared with the conventional full spatial attention [37],
[44]. Given the same input to the standard full spatial
attention, which takes the all2all interaction between every
two pixels on a feature map, its computational cost Cfull can
be calculated as:

Cfull = O(CHWHW ), (6)

where the square of H ×W will result in huge memory and
computing cost when the spatial size is high.

As for the computational cost of SeT, the computational
complexity CSeT is:

CSeT = O(CK2(K + 2O)2 + CK2N2)

= O(CK2(K + 2O)2 + C
H2W 2

K2
)

(7)

TABLE 2
Hyper-parameters for models of SeT family.

Model Number of Blocks
[L1, L2, L3, L4]

B K O

SeT-8 [2, 2, 2, 2] 2 8 2
SeT-16 [3, 4, 6, 3] 4 8 2
SeT-33 [3, 4, 23, 3] 4 8 2

To make it clear, we calculate CSeT

Cfull
for better comparison:

CSeT

Cfull
=

CK2(K + 2O)2 + CH2W 2

K2

CH2W 2

CSeT

Cfull
=

1

K2
+

K2(K + 2O)2

H2W 2

CSeT

Cfull
≈ K2(K + 2O)2

H2W 2
.

(8)

For simplicity, we ignore the fractional 1
K2 as we set K > 3

in practice. Since normally a patch is just a small portion of
the entire feature map, s.t. (K +2O)2 < HW , CSeT < Cfull.
SeT will save more computational cost when the feature
map resolution is high. The huge reduction in computation
and memory cost makes it possible to transfer attention onto
larger feature maps.

3.5 Network Structure
To construct an entire network using the above basic block,
we first divide the whole network into four stages according
to the resolution of their feature maps. Note that the net-
work is constructed with the following hyper-parameters:
• B is the bottleneck factor
• G represents the number of heads (groups) of the multi-

head attention.
• C represents the number of channels for the input and

output of each block.
• L1, L2, L3, L4 are the numbers of blocks for stage
1, 2, 3, 4 respectively.

• K,K + 2O are the patch sizes of query patch and
reference patch as illustrated above.

We build up three models named SeT-8, set-16 and SeT-
33 according to the number of the building blocks. Based on
the experimental results in Section 4, for the first two stages
of SeT, we only use pixel-wise attention in the building
blocks, while for the last two stages, both pixel-wise local
attention and patch-wise global attention are applied.

Apart from the attention model, we also construct a hy-
brid model by replacing all separable attention components
of the building block with a 3 × 3 convolutions at the first
two stages of the network.

4 EXPERIMENTS FOR IMAGE CLASSIFICATION

4.1 Implementation Details on ImageNet
We first conduct experiments for image classification on
the ImageNet 2012 classification dataset [34] that includes
1000 classes. There are 1.2 million images for training and
50 thousands images for validation. Unlike ViT [9], which
is pre-trained on other datasets e.g. ImageNet-21k, we only
train our network on the training set of ImageNet. We train
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TABLE 3
Experimental results on ImageNet. 1 represents our enhanced

re-implementation using training tricks e.g. Mixup and AutoAug shown
in the second last row of Table 5.

Model Params
(M)

FLOPS
(G)

throughput
(img/s)

Top-1
Acc (%)

CNN Architectures
ResNet-50 [14] 25.5 4.1 1226 76.2
ResNet-101 [14] 44.4 7.8 753 77.4
ResNet-152 [14] 60.0 11.6 526 78.3
ResNet-50++1 25.5 4.1 1226 78.6
ResNet-101++1 44.4 7.8 753 80.4
RegNetY-4G++ [41] 20.6 4.0 1156.7 80.0
RegNetY-8G++ [41] 39.2 8.0 591.6 81.7

Transformer Architectures
ViT-B↑384 [9] 86.4 55.4 85.9 77.9
DeiT-Ti [41] 5.7 1.6 2536.5 72.2
DeiT-S [41] 22.1 4.6 940.4 79.8
DeiT-B [41] 86.6 17.6 292.3 81.8
LRNet-18 [19] 14.4 2.5 - 74.6
LRNet-50 [19] 23.3 4.3 - 77.3
LRNet-101 [19] 42.0 8.0 - 78.5
Swin-Ti [28] 29 4.5 755 81.3
Swin-S [28] 50 8.7 437 83.0
MViT-B-maxpool [10] 37 7.8 - 82.5
MViT-B [10] 37 7.8 - 83.0
PVT-T [43] 13.2 1.9 - 75.1
PVT-S [43] 24.5 3.8 - 79.8
PVT-M [43] 44.2 6.7 - 81.2
SAResNet-26 [31] 13.7 2.7 - 74.8
SAResNet-50 [31] 18.0 3.6 - 77.6
SeT-8 9.7 1.8 1336 78.1
SeT-16 24.7 4.4 683 81.7
SeT-33 40.3 7.7 401 83.3

the network using a batch size of 2048. The learning rate
is first warmed up for 5 epochs from 0 to 0.6 and will be
decreased to 0 at the end of the training process following a
cosine annealing schedule [29]. Previous transformer-based
backbones like [9], [41] heavily rely on the data augmen-
tation and regularization, as the learnt weights are data-
dependant. However, we find our network can be well-
tuned with much fewer bells and whistles. Details about
this will be discussed in the following sections.

4.2 Experimental results on ImageNet

We show the experimental results on ImageNet in Ta-
ble 3, which includes results for both CNN architectures
e.g. ResNet [14], SEResNet [20] and RegNet [30] and
transformer-based architectures e.g. ViT [9], DeiT [41], Local
Relation Networks (LRNet) [19] and Stand-Alone Networks
(SAResNet) [31]. Note that we categorize the attention mod-
els like [19], [31] as transformer-based architectures because
the whole backbone of attention model is identical to a
transformer encoder.
SeT vs. Token-based Transformers. We first compare SeT
to the token-based Vision Transformer (ViT), which radi-
cally reduces the image resolution at the beginning of the
network. When both networks are trained from scratch
only training on the training set of ImageNet, SeT-33 can
outperform ViT-B by 4.9% with only about half of its number
of parameters and FLOPS. The remarkable improvement
on ImageNet demonstrates the importance of retaining the
local features for image recognition.

TABLE 4
Experimental results on ImageNet when applying factorization on DeiT.

Model Params(M) FLOPS(G) Top-1
Acc (%)

DeiT-S [41] 22.1 4.6 79.8
SeT-ViT-S 23.9 4.2 80.4

Another token-based vision transformer, DeiT, is also
listed in Table 3 for comparison. We note that DeiT is con-
current to our work. The basic structure of DeiT is identical
to what proposed in ViT. The biggest difference between
them is that DeiT can achieve competitive performance on
ImageNet without using any additional datasets for pre-
training. DeiT manages to do this by successfully finding ex-
tensive data augmentations and regularization techniques.
When compare SeT with DeiT, we observe that SeT-8 can
surpass DeiT-Tiny by a significant 5.9% in terms of top-1
accuracy. As for small models like set-16, it can outperform
DeiT-S by 1.7% with much fewer data augmentations and
training tricks, which indicates that SeT is much more data-
efficient than the DeiT. SeT-33 as a larger model in the
SeT family can achieve comparable performance to DeiT
with 56.3% fewer FLOPS and 53.1% fewer parameters.
As for some other concurrent Transformers like PVT [43]
and Swin Transformer [28], SeT can also show its superior
performance. For example, SeT-8 can outperform PVT-T by
a significant 3%, and SeT-16 can outperform PVT-S and
Swin-T by 1.9% and 0.4% respectively.
SeT vs. Local-aware Transformers. SeT is better than exist-
ing local-aware models. Apart from token-based methods,
we further compare SeT with other local-aware attention
backbones e.g. LRNet [19] and SAResNet [31]. LRNet [19] is
designed for inferring local relationship between pixels with
attentive mechanism. As shown in Table 3, SeT outperforms
LRNet when compared under similar model capacity. As for
the comparison with SAResNet, SeT-8 can surpass SARes-
Net26 by 3.5% with about 33.3% fewer FLOPS. The compar-
ison with local-aware attention-based models demonstrates
the significance of the global attention in SeT.
SeT vs. CNN architectures. In this part, we observe that
SeT can be comparable with the state-of-the-art CNN archi-
tectures when FLOPS ≤ 8G. We compare SeT with CNN
baselines including ResNet [14], Squeeze-Excite (SE) ResNet
[20] and RegNetY (w/ SE). In addition to the results of
their original paper, we also compare with their better-tuned
versions (followed by ++ in Table 3) reported in [37], [41] for
fair comparison. Note that the tricks like data augmentation
and regularization applied on these baselines can lead to
significant improvement. For example, the top-1 accuracy of
SEResNet50++ is 2.5% higher than its original version. The
proposed SeT achieves 1.4% − 1.9% superior to SEResNet.
As for the comparison with RegNetY, the top-1 accuracy
between these two models are very close.

4.3 SeT is data-efficient compared to ViT/DeiT

As discussed above, SeT is better than ViT in term of
accuracy. Here we further show that SeT is more data-
efficient compared with the token-based transformers e.g.
ViT and DeiT. Table 5 exhibits the data augmentations and
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TABLE 5
Training tricks used for improving DeiT and SeT. SeT can outperform DeiT with much fewer data augmentations and regularization techniques.
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Top-1
DeiT-S AdamW 3 7 3 3 3 3 3 3 3 GELU 300 79.8
ViT-B SGD 7 3 3 7 7 7 3 7 3 GELU 300 71.5

SeT-16 SGD
7 7 7 7 7 7 3 7 3 ReLU 350 79.2
7 7 7 7 7 7 3 7 3 SiLU 350 79.6
7 3 3 7 7 7 3 7 3 SiLU 350 80.5

AdamW 3 7 3 3 3 3 3 7 3 SiLU 300 81.7

TABLE 6
3and 7in the brackets represent the existence of the module in stage

[1, 2, 3, 4]. If both the pixel-wise and patch-wise attentions are not
applied, then a 3× 3 convolution is placed as alternative, making it to
be a hybrid model. Models without postfix are trained for 120 epochs

without bells and whistles. ++ indicates that the model is trained under
the training regime shown in the last row in Table 5.

Model Params
(M)

FLOPs
(G) Pixel-wise Patch-wise Top-1 Acc

(%)

SeT-16

25.5 4.1 [7,7,7,7] [7,7,7,7] 76.9
24.8 4.2 [7,7,3,3] [7,7,3,3] 78.1 (+1.2)
24.2 4.1 [3,3,3,3] [7,7,3,3] 78.2 (+1.3)
19.2 3.8 [3,3,3,3] [7,7,7,7] 77.5 (+0.6)
24.7 4.4 [3,3,3,3] [3,3,3,3] 75.6 *

SeT-16++
24.2 4.1 [3,3,3,3] [7,7,3,3] 81.3
24.7 4.4 [3,3,3,3] [3,3,3,3] 81.7

regularization techniques we used compared to ViT and
DeiT. Unlike ViT that pre-trains itself on other extra-large
datasets like ImageNet-21k and JFT. SeT is only trained with
the data in the training set of ImageNet. Instead of first train-
ing on other datasets, DeiT proposes to train their network
only using the data of ImageNet and achieves a competitive
result by adopting heavy data augmentations and regular-
ization techniques. As shown in Table 5, when compared
with DeiT, SeT-16 can achieve even more competitive results
on ImageNet trained with much fewer data augmentations,
and techniques for regularization. The last row of Table 5
show that the performance of SeT can be further improved
using those bells and whistles like Mixup [49] and Auto-
augmentation [6] and SiLU [32]. Concretely, tricks includ-
ing repeated augmentation [16], random augmentation [7],
cutmix [48], random erase [54] and color jittering [25] are
used for improving DeiT but are not applied to SeT. We
also notice that SeT can be well-tuned by SGD while DeiT
or ViT can only be well-optimized using Adam [24]. This
demonstrates that SeT is more data-efficient than the token-
based transformers, which further implies the importance
of retaining the local features in visual modeling.

As shown in Table 4, we also found that when applying
the factorization proposed in this paper to DeiT-S, our
method can further boost the baseline performance with
lower computational cost. For all ablation studies in this
paper we propose the training regime in the fourth row of
Table 5 if not specified.

TABLE 7
Relative positional encoding is significantly better than the absolute

positional encoding.

Positional
Encoding Params FLOPS Top-1

Acc (%)
Relative 24.2 4.1 80.5
Absolute 24.2 4.0 78.1

4.4 Effects of local and global separable attention
Table 6 shows the effects of applying local and global
attention into SeT. As all images we feed into the network
are of size 224 × 224, the size of the feature map (7 × 7)
at the last stage will be smaller than the query patch size
we set (8× 8). Therefore, the pixel-wise local attentions here
at the last stage are equivalent to the global attention as
it can capture all the content of the image. However, in
this case, we can still apply patch-wise here so that the
weights within the patch-wise attention module can be pre-
trained for the down-stream tasks e.g. object detection and
instance segmentation that need to process images at higher
resolutions. We note that all results are trained with 120
epoch using the tricks shown in the second row of Table
5. As shown in 6, when compare the third row with the
fourth row, the application of the patch-wise attention in
stage 3, 4 leads to 0.7% gain on ImageNet. However,
when applying global attention to the shallow stages like
Stage 1 and Stage 2 (last row in Table 6), we observe
that the network suffers from an under-fitting problem and
cannot be well-tuned using the same training regime. When
using the Adam optimizer and trained under the training
regime shown in the last row of Table 5, our SeT-16 can
be well-tuned and achieve its best performance 81.7%. The
comparison between the third and the fifth row also reveals
that applying global interactions in the early stages can be
the reason why transformer-based method can be hard to
be tuned under SGD optimizer. We also observe that SeT
can be successfully combined with CNN architectures (the
second row in Table 6). If we replace all convolutions within
the stage 3, 4 with the separable attention, the network can
have an obvious 1.2% gain compared with the baseline.

4.5 Relative vs. Absolute positional encoding
Recent works [2], [31] propose relative positional encoding
to incorporate location information into contents. The rel-
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TABLE 8
Average Precision (%) of instance segmentation and object detection with Mask RCNN on MS COCO val-2017 . APm

∗ and APb
∗ denote the

average precision for masks and bounding boxes respectively, and AP∗
S , AP∗

M , AP∗
L denote the AP for small, medium and large objects

respectively. + denotes better training regime using Adam optimizer and multi-scale training proposed in [43].

Instance Segmentation Object Detection
Backbone Params (M) FLOPs (G) APm APm

S /APm
M/APm

L APm
50/APm

75 APb APb
S/APb

M/APb
L APb

50/APb
75

ResNet-50 44.2 180 34.7 18.3/37.4/47.2 55.7/37.2 38.2 21.9/40.9/49.5 58.8/41.4
SeT-16 41.3 196 37.2 (+2.5) 21.6/40.3/49.9 60.1/39.0 40.6 (+2.4) 25.6/44.0/52.6 63.4/43.7
PVT-S+ 44.1 230 37.8 (+3.1) 20.4/40.3/53.6 60.1/40.3 40.4 (+2.2) 22.9/43.0/55.4 62.9/43.8
Swin-T+ 48 267 39.8 (+5.1) 24.4/43.3/54.3 63.3/42.7 43.7 (+5.5) 28.5/47.0/57.3 66.6/47.7
SeT-16+ 41.3 196 39.9 (+5.2) 24.4/43.3/54.3 63.3/42.7 44.0 (+5.8) 29.7/47.8/57.2 66.8/48.0

TABLE 9
Experimental results for object detection when embedding into

RetinaNet. * SAResNet-50 is trained with a longer training schedule for
150 epochs.

Backbone Params FLOPs APb APb
S/APb

M/APb
L APb

50/APb
75

ResNet-50 37.7M 239G 36.5 20.4/40.3/48.1 55.4/39.1
SAResNet-50* - - 36.6(+0.1) 18.5/40.6/51.6 54.5/39.2
SeT-16 36.9M 255G 39.2(+2.7) 24.4/42.9/50.6 60.3/41.3

ative positional encoding Table 7 demonstrates the signif-
icance of the relative positional encoding r we proposed
in the pixel-wise attention. With just a fractional increase
in FLOPS, the relative positional encoding performs 2.4%
higher than the absolute one.

5 EXPERIMENTS ON MS COCO
Thanks to the pyramid-style design, SeT can be transferred
onto other down-stream tasks that require multi-scale fea-
tures e.g. object detection and instance segmentation. We
evaluate SeT on the challenging MS COCO dataset, which
consists of 115k images for training (train-2017) and 5k
images (val-2017) for validation. We train models on train-
2017 and report the results on val-2017. All reported results
follow the official definition of Average Precision (AP) met-
rics by MS COCO, which includes AP50 and AP75 (averaged
over IoU thresholds) and APS , APM , APL (AP at different
scales). Annotations of MS COCO include both bounding
boxes and polygon masks for object detection and instance
segmentation respectively.

We embed SeT into two popular frameworks. The one
is RetinaNet, which is an one-stage detector for object
detection. The other is Mask-RCNN, which is a two-stage
detector that can do object detection and instance segmen-
tation simultaneously. All modules of SeT except for the
positional encoding of the patch-wise attention are first pre-
trained on ImageNet before conducting experiment on MS
COCO. Note that the activation function we used here is
ReLU instead of SiLU.
Integrate SeT into RetinaNet. We first integrate SeT into
the popular one-stage detector RetinaNet [27] for object
detection. We use SeT as the backbone followed by a Fea-
ture Pyramid Network (FPN) [26] to refine the multi-scale
features of the network. We take 16 images in one batch
for 12 epochs (1×) for training. The learning rate is initially
warmed up for 500 steps from 0 to 0.02 and then decayed
after 8 and 11 epochs by a factor of 0.1.

Table 9 compare set-16 with the other two baselines
ResNet-50 and SAResNet-50. Despite the longer training
schedule of SAResNet (150 epochs), SeT still outperforms
SAResNet by a clear 2.6%. When comparing SeT with
ResNet-50, SeT achieves a significant 1.8%. We also notice
that SeT is remarkably better in detecting small objects.
To be specific, in terms of the AP of small objects (APb

S),
SeT performs 4.0% better than ResNet-50, and 5.9% better
than SAResNet. The improvement compared with these two
baselines validate the efficacy of the global attention.
Integrate SeT into Mask-RCNN. We further embed SeT into
the two-stage framework Mask-RCNN for object detection
and instance segmentation. Similar to what proposed in
RetinaNet, we also integrate the features of SeT into FPN
for multi-scale interactions. All models reported in Table 8
are trained under a 1× scheme. As shown in Table 8, SeT
is 2.5% higher than ResNet-50 for instance segmentation
and 2.4% higher for object detection. This means that the
multi-scale features extracted from SeT can be generalized
onto the down-stream tasks that require precise modeling
of the input images. We also train our network under a
better training regime for transformers proposed in [43] to
further validate the efficacy of our network. As shown in
Table 8, under the same training regime (denoted with a +
behind), our network SeT-16 can outperform PVT by a sig-
nificant 2.1% for instance segmentation and 3.6% for object
detection. It can also slightly outperform Swin-T as shown
in Table 8. This validates the importance of preserving the
local features for the input image.

In conclusion, the success on object detection and in-
stance segmentation demonstrates the transferability of SeT
to down-stream tasks. We thereby draw the conclusion that
SeT can be a promising approach to be used as an alternative
to the conventional CNN.

6 CONCLUSION

In this paper, we present SeT that factorizes the original
full spatial self-attention into pixel-wise local attention and
patch-wise global attention. Such factorization largely re-
duces the computational cost while retaining the informa-
tion of different granularity, which helps generate multi-
scale features required by different tasks. Extensive exper-
iments demonstrate that SeT performs better than the state-
of-the-art transformer-based approaches on ImageNet, and
can be well transferred to other down-stream tasks e.g.
object detection and instance segmentation.
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