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Abstract—State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on

unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quickly

adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability

reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency

between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It

consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also

improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching

query features with support features and prior masks. Extensive experiments on PASCAL-5i and COCO prove that the proposed prior

generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by

a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples.

Index Terms—Few-shot segmentation, few-shot learning, semantic segmentation, scene understanding

Ç

1 INTRODUCTION

RAPID development of deep learning has brought signifi-
cant improvement to semantic segmentation. The iconic

frameworks [2], [52] have profited a wide range of applica-
tions of automatic driving, robot vision, medical image, etc.
The performance of these frameworks, however, worsens
quickly without sufficient fully-labeled data or whenworking
on unseen classes. Even if additional data is provided, fine-
tuning is still time- and resource-consuming.

To address this issue, few-shot segmentation was pro-
posed [29] where data is divided into a support set and a
query set. As shown in Fig. 1, images from both support
and query sets are first sent to the backbone network to
extract features. Feature processing can be accomplished by
generating weights for the classifier [29], cosine-similarity
calculation [4], [40], or convolutions [13], [46] to generate
the final prediction.

The support set provides information about the target class
that helps the model to make accurate segmentation predic-
tion on the query images. This process mimics the scenario

where amodel makes the prediction of unseen classes on test-
ing images (query)with few labeled data (support). Therefore,
a few-shot model needs to quickly adapt to the new classes.
However, the commonproblems of existing few-shot segmen-
tation methods include generalization loss due to misuse of
high-level features and spatial inconsistency between the
query and support samples. In this paper, we mainly tackle
these two difficulties.

Generalization Reduction & High-Level Features. Common
semantic segmentation models rely heavily on high-level fea-
tures with semantic information. Experiments of CANet [46]
show that simply adding high-level features during feature
processing in a few-shot model causes performance drop.
Thus the way to utilize semantic information in the few-shot
setting is not straightforward. Unlike previous methods, we
use ImageNet [28] pre-trained high-level features of the query
and support images to produce ‘priors’ for the model. These
priors help the model to better identify targets in query
images. Since the prior generation process is training-free, the
resulting model does not lose the generalization ability to
unseen classes, despite the frequent use of high-level informa-
tion of seen classes during training.

Spatial Inconsistency. Besides, due to the limited samples,
scale and pose of each support object may vary greatly from
its query target, which we call spatial inconsistency. To tackle
this problem, we propose a new module named Feature
Enrichment Module (FEM) to adaptively enrich query fea-
tures with the support features. Ablation study in Section 4.3
shows that merely incorporating the multi-scale scheme to
tackle the spatial inconsistency is sub-optimal by showing
that FEM provides conditioned feature selection that helps
retain essential information passed across different scales.
FEM achieves superior performance than other multi-scale
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structures, such as HRNet [39], PPM [52], ASPP [3] and
GAU [45].

Finally, based on the proposed prior generation method
and Feature Enrichment Module, we build a new network–
Prior Guided Feature Enrichment Network (PFENet). The
ResNet-50 based PFENet only contains 10.8 M learnable
parameters, and yet achieves new state-of-the-art results on
both PASCAL-5i [29] and COCO [19] benchmark with 15.9
and 5.1 FPS with 1-shot and 5-shot settings respectively.
Moreover, we manifest the effectiveness by applying our
model to the zero-shot scenario where no labeled data is
available. The result is surprising–PFENet sill achieves
decent performance without major structural modification.

Our contribution in this paper is threefold:

� We leverage high-level features and propose train-
ing-free prior generation to greatly improve predic-
tion accuracy and retain high generalization.

� By incorporating the support feature and prior infor-
mation, our FEM helps adaptively refine the query
feature with the conditioned inter-scale information
interaction.

� PFENet achieves new state-of-the-art results on both
PASCAL-5i and COCO datasets without compromis-
ing efficiency.

2 RELATED WORK

2.1 Semantic Segmentation

Semantic segmentation is a fundamental topic to predict the
label for each pixel. The Fully Convolutional Network
(FCN) [30] is developed for semantic segmentation by
replacing the fully-connected layer in a classification frame-
work with convolutional layers. Following approaches,
such as DeepLab [2], DPN [21] and CRF-RNN [54], utilize
CRF/MRF to help refine coarse prediction. The receptive
field is important for semantic segmentation; thus Deep-
Lab [2] and Dilation [43] introduce the dilated convolution
to enlarge the receptive field. Encoder-decoder struc-
tures [8], [18], [27] are adopted to help reconstruct and
refine segmentation in steps.

Contextual information is vital for complex scene under-
standing. ParseNet [20] applies global pooling for semantic
segmentation. PSPNet [52] utilizes a Pyramid Pooling Mod-
ule (PPM) for context information aggregation over differ-
ent regions, which is very effective. DeepLab [2] develops

atrous spatial pyramid pooling (ASPP) with filters in differ-
ent dilation rates. Attention models are also introduced.
PSANet [53] develops point-wise spatial attention with a bi-
directional information propagation paradigm. Channel-
wise attention [47] and non-local style attention [7], [14],
[44], [48] are also effective for segmentation. These methods
work well on large-sample classes. They are not designed to
deal with rare and unseen classes. They also cannot be eas-
ily adapted without fine-tuning.

2.2 Few-Shot Learning

Few-shot learning aims at image classification when only a
few training examples are available. There are meta-learn-
ing based methods [1], [6], [9] and metric-learning ones [33],
[36], [38]. Data is essential to deep models; therefore, several
methods improve performance by synthesizing more train-
ing samples [11], [42], [49]. Different from few-shot learning
where prediction is at the image-level, few-shot segmenta-
tion makes pixel-level predictions, which is much more
challenging.

Our work closely relates to metric-learning based few-
shot learning methods. Prototypical network [33] is trained
to map input data to a metric space where classes are repre-
sented as prototypes. During inference, classification is
achieved by finding the closest prototype for each input
image, because data belonging to the same class should be
close to the prototype. Another representative metric-based
work is the relation network [36] that projects query and
support images to 1 � 1 vectors and then performs classifi-
cation based on the cosine similarity between them.

2.3 Few-Shot Segmentation

Few-shot segmentation places the general semantic segmen-
tation in a few-shot scenario, where models perform dense
pixel labeling on new classes with only a few support sam-
ples. OSLSM [29] first tackles few-shot segmentation by
learning to generate weights of the classifier for each class.
PL [4] applies prototyping [33] to the segmentation task. It
learns a prototype for each class and calculates the cosine
similarity between pixels and prototypes to make the pre-
diction. More recently, PANet [40] introduces prototype
alignment regularization that encourages the model to learn
consistent embedding prototypes for better performance,
and CANet [46] uses the iterative optimization module on
the merged query and support feature to iteratively refine
results.

Similar to CANet [46], we use convolution to replace the
cosine similarity that may not well tackle complex pixel-
wise classification in the segmentation task. However, dif-
ferent from CANet, our baseline model uses fewer convolu-
tion operations and still achieves decent performance.

As discussed before, these few-shot segmentation meth-
ods do not sufficiently consider generalization loss and spa-
tial inconsistency. Unlike PGNet [45] that uses a graph-based
pyramid structure to refine results via Graph Attention Unit
(GAU) followed by three residual blocks and an ASPP [3],
we instead incorporate a few basic convolution operations
with the proposed prior masks and FEM in a multi-scale
structure to accomplish decent performance.

Fig. 1. Summary of recent few-shot segmentation frameworks. The
backbone method used to extract support and query features can be
either a single shared network or two Siamese networks.
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3 OUR METHOD

In this section, we first briefly describe the few-shot segmen-
tation task in Section 3.1. Then, we present the prior genera-
tion method and the Feature Enrichment Module in
Sections 3.2 and 3.3 respectively. Finally, in Section 3.4,
details of our proposed Prior Guided Feature Enrichment
Network are discussed.

3.1 Task Description

A few-shot semantic segmentation system has two sets, i.e.,
the query set Q and support set S. Given K samples from
support set S, the goal is to segment the area of unseen class
Ctest from each query image IQ in the query set.

Models are trained on classes Ctrain (base) and tested on
previously unseen classes Ctest (novel) in episodes ðCtrain \
Ctest ¼ ?Þ. The episode paradigm was proposed in [38] and
was first applied to few-shot segmentation in [29]. Each epi-
sode is formed by a support set S and a query set Q of the
same class c. The support set S consists of K samples S ¼
fS1; S2; . . . ; SKg of class c, which we call ‘K-shot scenario’.
The ith support sample Si is a pair of fISi ;MSigwhere ISi and
MSi are the support image and label of c respectively. For the
query set, Q ¼ fIQ;MQg where IQ is the input query image
and MQ is the ground truth mask of class c. The query-
support pair fIQ; Sg ¼ fIQ; IS1 ;MS1 ; IS2 ;MS2 ; . . . ; ISK ;MSKg
forms the input data batch to themodel. The ground truthMQ

of the query image is invisible to the model and is used to
evaluate the prediction on the query image in each episode.

3.2 Prior for Few-Shot Segmentation

3.2.1 Important Observations

CANet [46] outperforms previous work by a large margin
on the benchmark PASCAL-5i dataset by extracting only
middle-level features from the backbone (e.g., conv3_x and
conv4_x of ResNet-50). Experiments in CANet also show
that the high-level (e.g., conv5_x of ResNet-50) features lead
to performance reduction. It is explained in [46] that the
middle-level feature performs better since it constitutes
object parts shared by unseen classes, but our alternative
explanation is that the semantic information contained in the
high-level feature is more class-specific than the middle-level fea-
ture, indicating that the former is more likely to negatively

affect model’s generalization power to unseen classes. In
addition, higher-level feature directly provides semantic
information of the training classes Ctrain, contributing more
in identifying pixels belonging to Ctrain and reducing the
training loss than the middle-level information. Conse-
quently, such behavior results in a preference for Ctrain. The
lack of generalization and the preference for the training
classes are both harmful for evaluation on unseen test clas-
ses Ctest.

It is noteworthy that contrary to the finding that high-
level feature adversely affects performance in few-shot seg-
mentation, prior segmentation frameworks [27], [51] exploit
these features to provide semantic cues for final prediction.
This contradiction motivates us to find a way to make use of
high-level information in a training-class-insensitive way to
boost performance in few-shot segmentation.

3.2.2 Prior Generation

In our work, we transform the ImageNet [28] pre-trained
high-level feature containing semantic information into a
prior mask that tells the probability of pixels belonging to a
target class as shown in Fig. 2. During training, the back-
bone parameters are fixed as those in [40], [46]. Therefore,
the prior generation process does not bias towards training
classes Ctrain and upholds class-insensitivity during the
evaluation on unseen test classes Ctest. Let IQ; IS denote the
input query and support images,MS denote the binary sup-
port mask, F denote the backbone network, and XQ;XS

denote the high-level query and support features. We have

XQ ¼ FðIQÞ; XS ¼ FðISÞ �MS; (1)

where � is the Hadamard product – the sizes of XQ and XS

are both ½h;w; c�. Note that the output ofF is processedwith a
ReLU function. So the binary support mask MS removes the
background in support feature by setting it to zero.

Specifically, we define the prior YQ of query feature XQ

as the mask that reveals the pixel-wise correspondence
between XQ and XS . A pixel of query feature XQ with a
high value on YQ means that this pixel has a high correspon-
dence with at least one pixel in support feature. Thus, it is
very likely to be in the target area of the query image. By set-
ting the background on support feature to zero, pixels of

Fig. 2. Illustration of the training-free prior generation. Top: support images with the masked area in the target class. Middle: query images. Bottom:
prior masks of query images where the regions of interest are highlighted.
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query feature yield no correspondence with the background
on support feature–they only correlate with the foreground
target area. To generate YQ, we first calculate the pixel-wise
cosine similarity cosðxq; xsÞ 2 R between feature vectors of
xq 2 XQ and xs 2 XS as

cosðxq; xsÞ ¼
xT
q xs

xq

�� �� xsk k q; s 2 f1; 2; . . . ; hwg: (2)

For each xq 2 XQ, we take the maximum similarity among
all support pixels as the correspondence value cq 2 R as

cq ¼ max
s2f1;2;...;hwg

ðcosðxq; xsÞÞ; (3)

CQ ¼ ½c1; c2; . . . ; chw� 2 Rhw�1: (4)

Then we produce the prior mask YQ by reshaping CQ 2
Rhw�1 into YQ 2 Rh�w�1. We process YQ with a min-max nor-
malization (Eq. (5)) to normalize the values to between 0
and 1, as shown in Fig. 2. In Eq. (5), � is set to 1e� 7 in our
experiments.

YQ ¼ YQ �minðYQÞ
maxðYQÞ �minðYQÞ þ �

: (5)

The key point of our proposed prior generation method
lies in the use of fixed high-level features to yield the prior
mask by taking the maximum value from a similarity matrix
of size hw� hw as given in Eqs. (2) and (3), which is rather
simple and effective. Ablation study comparing other alter-
native methods used in [24], [40], [50] in Section 4.4 demon-
strates the superiority of our method.

3.3 Feature Enrichment Module

3.3.1 Motivation

Existing few-shot segmentation frameworks [4], [13], [24],
[26], [29], [31], [40], [46] use masked global average pooling
for extracting class vectors from support images before fur-
ther processing. However, global pooling on support images
results in spatial information inconsistency since the area of
query targetmay bemuch larger or smaller than support sam-
ples. Therefore, using a global pooled support feature to
directlymatch each pixel of the query feature is not ideal.

A natural alternative is to add PPM [52] or ASPP [3] to
provide multi-level spatial information to the feature. PPM
and ASPP help the baseline model yield better performance
(as demonstrated in our later experiments). However, these
two modules are suboptimal in that: 1) they provide spatial
information to merged features without specific refinement
process within each scale; 2) the hierarchical relations across
different scales are ignored.

To alleviate these issues, we disentangle the multi-scale
structure andpropose the feature enrichmentmodule to 1) hor-
izontally interact the query feature with the support features
and prior masks in each scale, and 2) vertically leverage the
hierarchical relations to enrich coarse featuremaps with essen-
tial information extracted from the finer feature via a top-
down information path. After horizontal and vertical optimi-
zation, features projected into different scales are then collected
to form the new query feature. Details of FEMare as follows.

3.3.2 Module Structure

As shown in Fig. 3, the feature enrichment module takes the
query feature, prior mask and support feature as input. It
outputs the refined query feature with enriched information

Fig. 3. Overview of our Prior Guided Feature Enrichment Network with the prior generation and Feature Enrichment Module. White blocks marked
withH andM represent the high- and middle-level features extracted from backbone respectively.
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from the support feature. The enrichment process can be
divided into three sub-processes of 1) inter-source enrich-
ment that first projects input to different scales and then
interacts the query feature with support feature and prior
mask in each scale independently; 2) inter-scale interaction
that selectively passes essential information between
merged query-support features across different scales; and
3) information concentration that merges features in differ-
ent scales to finally yield the refined query feature. An illus-
tration of FEM with four scales and a top-down path for
inter-scale interaction is shown in Fig. 4.

Inter-Source Enrichment. In FEM, B ¼ ½B1; B2; . . . ; Bn�
denotes n different spatial sizes for average pooling. They are
in the descending order B1 > B2 > . . . > Bn. The input
query feature XQ 2 Rh�w�c is first processed with adaptive

average pooling to generate n sub-query features XFEM
Q ¼

½X1
Q;X

2
Q; . . . ;X

n
Q� of n different spatial sizesXi

Q 2 RBi�Bi�c. n
spatial sizes make the global-average pooled support feature
XS 2 R1�1�c be expanded to different n featuremapsXFEM

S ¼
½X1

S;X
2
S; . . . ;X

n
S� (Xi

S 2 RBi�Bi�c), and the prior YQ 2 Rh�w�1

is accordingly resized to Y FEM
Q ¼ ½Y 1

Q; Y
2
Q; . . . ; Y

n
Q �

(Y i
Q 2 RBi�Bi�1).

Then, for i 2 f1; 2; . . . ; ng, we concatenateXi
Q,X

i
S and Y i

Q,
and process each concatenated feature with convolutions to
generate the merged query featuresXi

Q;m 2 RBi�Bi�c as

Xi
Q;m ¼ F 1�1ðXi

Q �Xi
S � Y i

QÞ; (6)

where F 1�1 represents the 1 � 1 convolution that yields the
merged feature with c ¼ 256 output channels.

Inter-Scale Interaction. It is worth noting that tiny objects
may not exist in the down-sampled feature maps. A top-
down path adaptively passing information from finer fea-
tures to the coarse ones is conducive to building a hierarchi-
cal relationship within our feature enrichment module.
Now the interaction is between not only the query and sup-
port features in each scale (horizontal), but also the merged
features of different scales (vertical), which is beneficial to
the overall performance.

The circled M in Fig. 4 represents the inter-scale merging
module M that interacts between different scales by selec-
tively passing useful information from the auxiliary feature
to the main feature to generate the refined feature Xi

Q;new.
This process can be written as

Xi
Q;new ¼ MðXMain;i

Q;m ;XAux;i
Q;m Þ; (7)

where XMain;i
Q;m is the main feature and XAux;i

Q;m is the auxiliary
feature for the ith scaleBi. For example, in an FEMwith a top-
down path for inter-scale interaction, finer feature (auxiliary)
Xi�1

Q;m needs to provide additional information to the coarse
feature (main) Xi

Q;mðBi�1 > Bi; i 5 2Þ. In this case, XAux;i
Q;m ¼

Xi�1
Q;m and XMain;i

Q;m ¼ Xi
Q;m. Other alternatives for inter-scale

interaction include the bottom-up path that enriches finer fea-

tures (main) with information coming from the coarse ones

(auxiliary), and the bi-directional variants, i.e., a top-down
path followed by a bottom-up path, and a bottom-up path fol-

lowed by a top-down path. The top-down path shows its

superiority in Section 4.3.1.

Fig. 4. Visual illustration of FEM (dashed box) with four scales and a top-down path. C, 1 x 1 and Circled M represent concatenation, 1�1 convolution
and inter-scale merging module respectively. Activation functions are ReLU.
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The specific structure of the inter-scalemergingmoduleM
is shown in Fig. 5. We first resize the auxiliary feature to the
same spatial size as themain feature. Thenwe use a 1� 1 con-
volution a to extract useful information from the auxiliary fea-
ture conditioned on the main feature. Two 3� 3 convolutions
b followed are used to finish the interaction and output the
refined feature. The residual link within the inter-scale merg-
ing module M is used for keeping the integrity of the main
feature in the output featureXi

Q;new. For those features that do
not have auxiliary features (e.g., the first merged featureX1

Q;m

in the top-down path and the last merged featureXn
Q;m in the

bottom-up path), we simply ignore the concatenationwith the
auxiliary feature in M – the refined feature is produced only
by themain feature.

Information Concentration. After inter-scale interaction, n
refined feature maps are obtained as Xi

Q;new; i 2 f1; 2; . . . ; ng.
Finally, the output query feature XQ;new 2 Rh�w�c is formed
by interpolation and concatenation of n refined feature maps
Xi

Q;new 2 Rh�w�c followed by an 1�1 convolutionF 1�1 as

XQ;new ¼ F 1�1ðX1
Q;new �X2

Q;new . . .�Xn
Q;newÞ: (8)

The visual illustration of the baseline model without
FEM (B1 ¼ h ¼ w) is shown in Fig. 6. To encourage better
feature enrichment, we add intermediate supervision by
attaching classification head (Fig. 7b) to eachXi

Q;new.
In summary, by incorporating the pooled support fea-

tures and prior masks to query features with different spa-
tial sizes, the model learns to adaptively enrich the query
feature with information coming from the support feature
at each location under the guidance of prior mask and

supervision of ground-truth. Moreover, the vertical inter-
scale interaction supplements the main feature with the con-
ditioned information provided by the auxiliary feature.
Therefore, FEM yields greater performance gain on baseline
than other feature enhancement designs (e.g., PPM [52],
ASPP [3] and GAU [45]). Experiments in Section 4.3 provide
more details.

3.4 Prior Guided Feature Enrichment Network

3.4.1 Model Description

Based on the proposed prior generation method and the fea-
ture enrichment module, we propose the Prior Guided Fea-
ture Enrichment Network as shown in Fig. 3. The ImageNet
[28] pre-trained CNN is shared by support and query
images to extract features. The extracted middle-level sup-
port and query features are processed by 1 � 1 convolution
to reduce the channel number to 256.

After feature extraction and channel reduction, the fea-
ture enrichment module enriches the query feature with the
support feature and prior mask. On the output feature of
FEM, we apply a convolution block (Fig. 7a) followed by a
classification head to yield the final prediction. Classifica-
tion head is composed of one 3 � 3 convolution and 1 � 1
convolution with Softmax function as shown in Fig. 7b. For
all backbone networks, we use the outputs of the last layers
of conv3_x and conv4_x as middle-level features M to gen-
erate the query and support features by concatenation, and
take the output of the last layer of conv5_x as high-level fea-
turesH to produce the prior mask.

In the 5-shot setting, we simply take the average of 5
pooled support features as the new support feature before
concatenation with the query feature. Similarly, the final
prior mask before the concatenation in FEM is also obtained
by averaging five prior masks produced by one query fea-
ture with different support features.

3.4.2 Loss Function

Weselect the cross entropy loss as our loss function.As shown
in Section 3.3.2 and Fig. 3, for a FEM with n different spatial
sizes, the intermediate supervision on Xi

Q;new (i 2 f1; 2; . . . ;
ng) generates n losses Li

1 (i 2 f1; 2; . . . ; ng). The final predic-
tion of PFENet generates the second lossL2. The total lossL is
theweighted sumofLi

1 andL2 as

L ¼ s

n

Xn

i¼1

Li
1 þ L2; (9)

where s is used to balance the effect of intermediate super-
vision. We empirically set s to 1.0 in all experiments.

Fig. 5. Visual illustration of the inter-scale merging module M. C is con-
catenation and þ is pixel-wise addition. a means 1 � 1 convolution and
b represents two 3 � 3 convolutions. Activation functions are ReLU. For
features that do not have auxiliary features, there is no concatenation
with the auxiliary feature and the refined feature is produced only by the
main feature with a and b.

Fig. 6. Visual illustration of the baseline structure that processes fea-
tures in the original spatial size of the input features.

Fig. 7. Structures of (a) convolution block and (b) classification head.

TIAN ETAL.: PRIOR GUIDED FEATURE ENRICHMENT NETWORK FOR FEW-SHOT SEGMENTATION 1055

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on October 12,2022 at 04:25:42 UTC from IEEE Xplore.  Restrictions apply. 



4 EXPERIMENTS

4.1 Implementation Details

Datasets. We use the datasets of PASCAL-5i [29] and COCO
[19] in evaluation. PASCAL-5i is composed of PASCAL
VOC 2012 [5] and extended annotations from SDS [10] data-
sets. 20 classes are evenly divided into 4 folds i 2 f0; 1; 2; 3g
and each fold contains 5 classes. Following OSLSM [29], we
randomly sample 1,000 query-support pairs in each test.

Following [24], we also evaluate our model on COCO by
splitting four folds from 80 classes. Thus each fold has 20
classes. The set of class indexes contained in fold i is written
as f4x� 3þ ig where x 2 f1; 2; . . . ; 20g; i 2 f0; 1; 2; 3g. Note
that the COCO validation set contains 40,137 images (80
classes), which are much more than the images in PASCAL-
5i. Therefore, 1,000 randomly sampled query-support pairs
used in previous work are not enough for producing reli-
able testing results on 20 test classes. We instead randomly
sample 20,000 query-support pairs during the evaluation on
each fold, making the results more stable than testing on
1,000 query-support pairs used in previous work. Stability
statistics are shown in Section 4.7.

For both PASCAL-5i and COCO, when testing the model
on one fold, we use the other three folds to train the model
for cross-validation. We take the average of five testing
results with different random seeds for comparison as
shown in Tables 9 and 10.

Experimental Setting. Our framework is constructed on
PyTorch. We select VGG-16 [32], ResNet-50 [12] and
ResNet-101 [12] as our backbones for fair comparison with
other methods. The ResNet we use is the dilated version
used in previous work [13], [24], [46]. The VGG we use is
the original version [32]. All backbone networks are initial-
ized with ImageNet [28] pretrained weights. Other layers
are initialized by the default setting of PyTorch. We use
SGD as our optimizer. The momemtum and weight decay
are set to 0.9 and 0.0001 respectively. We adopt the ‘poly’
policy [2] to decay the learning rate by multiplying ð1�
currentiter
maxiter

Þpower where power equals to 0.9.

Our models are trained on PASCAL-5i for 200 epochs as
that of [46] with learning rate 0.0025 and batch size 4. For
experiments on COCO, models are trained for 50 epochs with
learning rate 0.005 and batch size 8. Parameters of the back-
bone network are not updated. During training, samples are
processed with mirror operation and random rotation from
-10 to 10 degrees. Finally, we randomly crop 473� 473
patches from the processed images as training samples. Dur-
ing the evaluation, following [31], [40], [46], each input sample
is resized to the training patch size butwith respect to its origi-
nal aspect ratio by padding zero. We directly output the sin-
gle-scale results without fine-tuning and any additional post-
processing (such as multi-scale testing and DenseCRF [16]).
Our experiments are conducted on an NVIDIA Titan V GPU
and Intel Xeon CPU E5-2620 v4 @ 2.10 GHz. The code and
trainedmodelswill bemade publicly available.

Evaluation Metrics. Following [24], [46], we adopt the
class mean intersection over union (mIoU) as our major
evaluation metric for ablation study since the class mIoU is
more reasonable than the foreground-background IoU (FB-
IoU) as stated in [46]. The formulation follows mIoU ¼
1
C

PC
i¼1 IoUi, where C is the number of classes in each fold

(e.g., C ¼ 20 for COCO and C ¼ 5 for PASCAL-5i) and IoUi

is the intersection-over-union of class i. We also report the
results of FB-IoU for comparison with other methods. For
FB-IoU calculation on each fold, only foreground and back-
ground are considered (C ¼ 2). We take average of results
on all folds as the final mIoU/FB-IoU.

4.2 Results

As shown in Tables 1, 2 and 3, we build our models on three
backbones VGG-16, ResNet-50 and ResNet-101 and report the
mIoU/FB-IoU results respectively. By incorporating the pro-
posed prior mask and FEM, our model significantly outper-
forms previous methods, reaching new state-of-the-art on
both PASCAL-5i and COCO datasets. The PFENet can even
outperform other methods on COCO with more than 10
points in terms of class mIoU. Our performance advantage on

TABLE 1
Class mIoU Results on Four Folds of PASCAL-5i

Methods
1-Shot 5-Shot

Params
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

VGG-16 Backbone
OSLSM2017 [29] 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 44.0 276.7M
co-FCN2018 [25] 36.7 50.6 44.9 32.4 41.1 37.5 50.0 44.1 33.9 41.4 34.2M
SG-One2018 [50] 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1 19.0M
AMP2019 [31] 41.9 50.2 46.7 34.7 43.4 41.8 55.5 50.3 39.9 46.9 34.7M
PANet2019 [40] 42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7 14.7M
FWBF2019 [24] 47.0 59.6 52.6 48.3 51.9 50.9 62.9 56.5 50.1 55.1 -
Ours 56.9 68.2 54.4 52.4 58.0 59.0 69.1 54.8 52.9 59.0 10.4M

ResNet-50 Backbone
CANet2019 [46] 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1 19.0M
PGNet2019 [45] 56.0 66.9 50.6 50.4 56.0 54.9 67.4 51.8 53.0 56.8 17.2M
Ours 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 10.8M

ResNet-101 Backbone
FWBF2019 [24] 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9 -
Ours 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4 10.8M

Params: number of learnable parameters.
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FB-IoU compared to PANet is relatively smaller than class
mIoU on COCO, because FB-IoU is biased towards the back-
ground and classes that cover a large part of the foreground
area. It is worth noting that our PFENet achieves the best per-
formance with the fewest learnable parameters (10.4M for
VGG based model and 10.8M for ResNet based models).
Qualitative results are shown in Fig. 8.

4.3 Ablation Study of FEM

The proposed feature enrichment module adaptively
enriches the query feature by merging with support features
in different scales and utilizes an inter-scale path to verti-
cally transfer useful information from the auxiliary features
to the main features. To verify the effectiveness of FEM, we
first compare different strategies for inter-scale interaction.
It shows that the top-down information path brings a decent
performance gain to the baseline without compromising the
model size much. Then experiments with different designs
for inter-source enrichment are presented followed by com-
parison with the other feature enrichment designs of HRNet
[39], ASPP [3] and PPM [52]. We also compare the Graph

Attention Unit used in the recent state-of-the-art few-shot
segmentation method PGNet [46] to refine the query fea-
ture. In these experiments, since our input images are
resized to 473 � 473, the input feature map of the module
(e.g., FEM, GAU) has the spatial size 60 � 60.

4.3.1 Inter-Scale Interaction Strategies

In this section, we show experimental results and analysis
on different vertical inter-scale interaction strategies to man-
ifest the rationales behind our designs of FEM.

As mentioned in Section 3.3, there are four alternatives
for the inter-scale interaction: top-down path (TD), bottom-
up path (BU), top-down + bottom-up path (TD+BU), and
bottom-up + top-down path (BU+TD). Our experimental
results in Table 4 show that TD and TD+BU help the basic
FEM structure without (W/O) the information path accom-
plish better results than both BU and BU+TD. The model
with TD+BU contains more learnable parameters (16.0M)
than TD (10.8M), and yet yields comparable performance.
We thus choose TD for inter-scale interaction.

These experiments prove that using the finer feature
(auxiliary) to provide additional information to the coarse
feature (main) is more effective than using the coarse fea-
ture (auxiliary) to refine the finer feature (main). It is
because the coarse features are not sufficient for targeting
the query classes during the later information concentration
stage if the target object disappears in small scales.

Different from common semantic segmentation where
contextual information is the key for good performance, the
way of representation and acquisition of query information
is more important in few-shot segmentation. Our motiva-
tion for designing FEM is to match the query and support
features in different scales to tackle the spatial inconsistency
between the query and support samples. Thus, a down-
sampled coarse query feature without target information is
less helpful for improving the quality of the final prediction
as shown in the experiments comparing TD and BU.

4.3.2 Comparison With Other Designs

PPM [52] and ASPP [3] are two popular feature enrichment
modules for semantic segmentation by providing multi-
resolution context, and HRNet [34], [35], [39] provides a new

TABLE 2
FB-IoU Results on PASCAL-5i

Methods 1-Shot 5-Shot Params

VGG-16 Backbone
OSLSM2017 [29] 61.3 61.5 272.6M
co-FCN2018 [25] 60.1 60.2 34.2M
PL2018 [4] 61.2 62.3 -
SG-One2018 [50] 63.9 65.9 19.0M
PANet2019 [40] 66.5 70.7 14.7M
Ours 72.0 72.3 10.4M

ResNet-50 Backbone
CANet2019 [46] 66.2 69.6 19.0M
PGNet2019 [45] 69.9 70.5 17.2M
Ours 73.3 73.9 10.8M

ResNet-101 Backbone
A-MCG2019 [13] 61.2 62.2 86.1M
Ours 72.9 73.5 10.8M

Our results are single-scale ones without additional post-processing like Den-
seCRF [16]. As many other methods do not report the specific result of each
fold, we present the comparison of the average FB-IoU results in this table.

TABLE 3
Class mIoU / FB-IoU Results on COCO

Methods Backbone
1-Shot 5-Shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

Class mIoU Evaluation
FWBF2019 [24] VGG-16 18.4 16.7 19.6 25.4 20.0 20.9 19.2 21.9 28.4 22.6
PANet2019 [40] VGG-16 - - - - 20.9 - - - - 29.7
Ours VGG-16 35.4 38.1 36.8 34.7 36.3 38.2 42.5 41.8 38.9 40.4

FWBF2019 [24] ResNet-101 19.9 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7
Ours ResNet-101 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7

FB-IoU Evaluation
PANet2019 [40] VGG-16 - - - - 59.2 - - - - 63.5
Ours VGG-16 53.3 66.1 66.6 67.1 63.3 53.5 68.3 68.2 70.1 65.0

A-MCG2019 [13] ResNet-101 - - - - 52.0 - - - - 54.7
Ours ResNet-101 51.6 65.9 66.6 66.0 63.0 52.3 70.0 69.5 71.3 65.8
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feature enrichment module for the segmentation task–it
achieved SOTA results on semantic segmentation bench-
marks. In few-shot segmentation, the Graph Attention Unit
has been used in PGNet [45] to refine the query feature with
contextual information. We note the proposed FEM module
yields even better few-shot segmentation performance.

The improvement brought by FEM stems from: 1) the
fusions of query and support features in different spatial sizes
(inter-source enrichment) since it encourages the following
convolution blocks to process the concatenated features inde-
pendently in different spatial resolutions, which is beneficial
to predicting query targets in various scales; 2) the inter-scale
interaction that selectively passes useful information from the
auxiliary feature to supplement the main feature. The model
without the vertical top-down information path (markedwith
WO) yieldsworse results in Table 5.

We implement the ASPP with dilation rates f1; 6; 12; 18g
and it achieves close results to PPM. The dilated convolu-
tion is less effective than adaptive average pooling for few-
shot segmentation [45]. In the following, we mainly make
comparisons with PPM and GAU first since they both use
the adaptive pooling to provide multi-scale information.
Then, we make a discussion with the module proposed by
HRNet.

Pyramid Pooling Module. As shown in Table 5, the model
with spatial sizes f60; 30; 15; 8g achieves better performance
than the baseline (original size with spatial size f60g) and
models that replace FEM with PPM and ASPP. Experiments
of PSPNet [52] show that the Pyramid Pooling Module with
spatial sizes f6; 3; 2; 1g yields the best performance. When
small spatial sizes are applied to FEM, it still outperforms
PPM. But small spatial sizes are not optimal in FEM because

Fig. 8. Qualitative results of the proposed PFENet and the baseline. The left samples are from COCO and the right ones are from PASCAL-5i. From
top to bottom: (a) support images, (b) query images, (c) ground truth of query images, (d) predictions of baseline, (e) predictions of PFENet.

TABLE 4
Class mIoU Results of Different Ways for Inter-Scale Interaction on PASCAL-5i

Methods
1-Shot 5-Shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

W/O 60.5 68.4 55.4 54.9 59.8 62.8 68.9 55.6 56.5 61.0
TD 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
BU 62.4 69.2 53.9 55.9 60.4 63.1 70.1 53.7 56.0 60.7
TD+BU 61.0 69.7 55.6 57.0 60.8 62.4 70.4 56.4 58.9 62.0
BU+TD 61.0 68.9 54.8 56.0 60.2 62.4 69.8 54.5 56.7 60.8

All models in this table are based on ResNet-50 and are trained and tested with prior masks.W/O: FEM without the information path for inter-scale interaction.
TD: FEM with top-down information path. BU: FEM with bottom-up information path. TD+BU: FEM with top-down + bottom-up information path. BU+TD:
FEM with bottom-up + top-down information path.
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the features pooled to spatial sizes like f6; 3; 2; 1g are too
coarse for interaction and fusion of query and support fea-
tures. Similarly, with small spatial size 4, the FEM with
f60; 30; 15; 8; 4g yields inferior performance compared to
using the model with spatial sizes f60; 30; 15; 8g. Hence, we
select f60; 30; 15; 8g as the feature scales for the inter-source
enrichment of FEM.

Graph Attention Unit. GAU [45] uses the graph attention
mechanism to establish the element-to-element correspon-
dence between the query and support features in each scale.
Pixels of the support feature are weighed by the GAU and
the new support feature is the weighted sum of the original
support feature. Then the new support feature is
concatenated with the query feature for further processing.

We directly replace the FEM with GAU on our baseline
and keep other settings for a fair comparison. GAU is imple-
mented with the code provided by the authors. Our baseline
with GAU achieves class mIoU 55.4 and 56.1 in 1- and 5-
shot evaluation respectively. Noticing the original feature
scales in GAU are f60; 8; 4g, we also implement it with
scales f60; 30; 15; 8g (denoted as GAU+) used in our FEM.
GAU+ yields smaller mIoU than GAU (54.9 in 1-shot and
55.4 in 5-shot). Though GAU also forms a pyramid structure
via adaptive pooling to capture the multi-level semantic
information, it is less competitive than the proposed FEM
(59.2 in 1-shot and 60.4 in 5-shot) because it misses the hier-
archical inter-scale relationship that adaptively provides
information extracted from other levels to help refine the
merged feature.

High-Resolution Network (HRNet). HRNet has shown its
superiority on many vision tasks by maintaining a high-
resolution feature through all the networks and gradually
fusing multi-scale features to enrich the high-resolution fea-
tures. The proposed FEM can be deemed as a variant of
HRB to tackle the few-shot segmentation problem. The
inter-source enrichment of FEM is analogous to the multi-
resolution parallel convolution in HRB as shown in Fig. 9.
But the inter-scale interaction in FEM passes conditioned
information from large to small scales rather than dense
interaction among all scales without selection in HRB.

For comparison, we experiment with replacing the FEM in
PFENetwithHRB and generate featuremaps inHRBwith the
same scales of those in FEM (f60; 30; 15; 8g). Results are listed
in Table 6. Directly applying HRB to the baseline (Baseline +
HRB) does yield better results than PPM and ASPP. Densely
passing information without selection causes redundancy to

TABLE 5
Class mIoU of FEMWith Different Spatial Sizes and the Comparison With PPM [52] and ASPP [3] on PASCAL-5i

Methods
1-Shot 5-Shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

{60} (Baseline) 54.3 67.3 53.3 50.4 56.3 57.1 68.0 53.8 52.9 58.0
{60} + PPM [52] 55.4 68.4 53.2 51.4 57.1 58.3 68.9 53.5 50.8 57.9
{60} + ASPP [3] 57.6 68.4 52.8 49.0 56.9 59.5 69.3 52.6 50.7 58.0
{60, 6, 3, 2, 1} 58.8 68.0 54.1 51.2 58.0 59.8 68.4 53.8 52.1 58.5
{60, 30} 55.3 67.8 54.7 51.2 57.3 58.4 68.7 54.5 53.1 58.7
{60, 30, 15} 56.6 68.0 54.6 52.9 58.0 59.0 68.7 55.0 54.0 59.2
{60, 30, 15, 8} 59.4 68.9 54.7 53.6 59.2 61.5 69.5 55.4 55.3 60.4
{60, 30, 15, 8, 4} 58.7 68.5 54.1 54.5 58.9 60.3 69.3 54.9 56.4 60.2
{60, 30, 15, 8}-WO 57.9 67.4 53.7 53.6 58.2 60.5 68.0 54.2 53.8 59.1

The backbone is ResNet-50. ‘f60; 30; 15; 8g’: the input query feature is average-pooled into four scales f60; 30; 15; 8g and concatenate with the expanded support
features respectively as shown in Fig. 4.WO: without inter-scale interaction.

Fig. 9. Modularized block of HRNet (HRB) that applies dense multi-reso-
lution fusions.

TABLE 6
Class mIoU on PASCAL-5i and Efficiency of Models

With/Without the Proposed Prior and FEM

Methods 1-Shot 5-Shot Params Speed

Baseline 56.3 58.0 4.5 M 17.7 FPS

Baseline + PPM [52] 57.1 57.9 5.7 M 17.6 FPS
Baseline + ASPP [3] 56.9 58.0 7.9 M 17.5 FPS
Baseline + HRB [39] 58.3 59.4 14.4 M 15.7 FPS

Baseline + HRB-Cond 59.2 60.0 23.0 M 14.5 FPS
Baseline + HRB-TD 58.9 60.0 14.0 M 16.1 FPS
Baseline + HRB-TD-Cond 59.3 60.4 18.3 M 15.6 FPS

Baseline + FEM 59.2 60.4 10.8 M 17.3 FPS
Baseline + FEMz 58.9 60.2 12.9 M 16.1 FPS
Baseline + Prior 58.2 59.6 4.5 M 16.5 FPS
Baseline + FEM + Prior 60.8 61.9 10.8 M 15.9 FPS

Baseliney 48.8 50.1 28.2 M 17.7 FPS
Baseliney + FEM 50.2 52.3 34.5 M 16.1 FPS
Baseliney + Priory 49.7 53.1 28.2 M 16.5 FPS
Baseliney + FEM + Priory 51.9 55.3 34.5 M 15.9 FPS

Models are based on ResNet-50. Params: The number of learnable parameters.
Speed: Average frame-per-second (FPS) of 1-shot evaluation.HRB: Modularized
block of HRNet [39]. -TD: Only top-down feature enrichment paths are enabled.
-Cond: The inter-scale enrichment modules are implemented to pass the condi-
tioned information. FEM: Feature enrichment module with f60; 30; 15; 8g.
FEMz: FEM with spatial sizes f60; 30; 15; 8; 4g. Prior: Prior masks got by fixed
high-level features (conv5_x). Baseliney: Models trained with all backbone
parameters. Priory: Prior masks got by learnable high-level features.
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the target feature and yields suboptimal results. Our solution
is, in the multi-resolution fusion stage of HRB, to apply the
proposed inter-scale merging module M to extract essential
information from the auxiliary features as shown in Fig. 10.
The model with conditioned feature selection (HRB-Cond)
accomplishes better performance.

As shown in Table 4, passing features from coarse to fine
levels (in a bottom-up order) adversely affects inter-scale
interaction. We accordingly remove all bottom-up paths in
HRB and only allow top-down ones (denoted as HRB-TD).
It is not surprising that HRB-TD achieves better perfor-
mance than HRB, and adding conditioned feature selection
(HRB-TD-Cond) brings even further improvement.

The best variant of HRB (i.e., HRB-TD-Cond) yields com-
parable results with FEM, and yet it brings much more learn-
able parameters (7.5M). Therefore, for few-shot segmentation,
the conditioned feature selection mechanism of the proposed
inter-scale merging module M is essential for improving the
performance of themulti-resolution structures.

4.4 Ablation Study of the Prior Generation

Experimental results in Table 6 show that the prior improves
models w/ and wo/ FEM. The cosine-similarity is widely
used for tackling few-shot segmentation. PANet [40] uses the
cosine-similarity to yield the intermediate and the final predic-
tion masks; SG-One [50] and [24] both utilize the cosine-simi-
larity mask from the mask pooled support feature to provide
additional guidance. However, these methods overlooked
two factors. First, the mask generation process contains train-
able components and the generated mask is thus biased
towards the base classes during training.

Second, the discrimination loss is led by the masked aver-
age pooling on support features, since themost relevant infor-
mation in the support feature may be overwhelmed by the
irrelevant ones during the pooling operation. For example,
the discriminative regions for “cat & dog” are mainly around
their heads. The main bodies share similar characteristics
(e.g., tailed quadrupeds), making representation produced by
masked global average pooling lose the discriminative infor-
mation contained in the support samples.

In the following, we first show the rationale behind our
prior generation using the fixed high-level feature and tak-
ing the maximum pixel-wise correspondence value from
the similarity matrix. Then we make a comparison with
other methods to demonstrate the superiority of our strat-
egy. We also include the analysis of the generalization abil-
ity on the unseen objects out of the ImageNet [28] dataset to
further manifest the robustness of our method.

4.4.1 Feature Selection

In our design, we select the fixed high-level feature for the
prior generation because it can provide sufficient semantic
information for accurate segmentation without sacrificing
the generalization ability. The proposed prior generation is
independent of the training process. So it does not lead to
loss of generalization power. The prior masks provide the
bias-free prior information from high-level features for both
seen and unseen data during the evaluation, while masks
produced by learnable feature maps (e.g., [24], [40], [50]) are
affected by parameter learning during training. As a result,
the preference for the training classes is inevitable for these
later masks during the inference. To show the superiority of
our choice, we conduct experiments on different sources of
features for generating prior masks.

Quantitative Analysis. Table 7 shows that the mask gener-
ated by either learnable or fixed middle-level features (Pri-
orLM or PriorFM ) is less improved than our PriorFH since the
middle-level feature is less effective to reveal the semantic
correspondence between the query and support features.
However, the results of mask got by learnable high-level
feature (PriorLH) are even significantly worse than that of
our baseline due to the fact that the learnable high-level fea-
ture severely overfits to the base classes: the model relies on

Fig. 10. Comparison between feature fusion strategies of (left) HRB and
(right) HRB-Cond. Features from different scales are directly added to
the main feature in (left), while in (right), essential information is selected
from auxiliary features conditioned on the main features by the inter-
scale merging moduleM.

TABLE 7
Class mIoU Results of Different Prior Masks on PASCAL-5i

Methods
1-Shot 5-Shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

Baseline 49.4 64.6 53.3 46.0 53.3 51.5 65.5 52.5 47.0 54.1
Baseline + PriorLM 50.3 54.5 53.0 46.2 53.5 51.9 65.7 52.9 47.2 54.4
Baseline + PriorLH 37.8 60.8 53.5 43.4 48.9 42.5 64.2 57.8 47.6 53.0
Baseline + PriorFM 51.2 64.4 53.9 45.7 53.8 52.8 65.1 53.2 47.5 54.7
Baseline + PriorFH 53.5 65.6 53.6 48.8 55.4 55.7 66.4 53.8 49.8 56.4
Baseline + Prior-AFH 52.2 65.4 54.5 48.5 55.1 54.8 66.0 54.3 50.2 56.3
Baseline + Prior-PFH 52.4 65.8 53.1 47.6 54.7 54.9 67.0 53.5 48.8 56.1
Baseline + Prior-FWLM 50.6 64.9 52.4 42.9 52.7 53.4 65.5 51.7 43.2 53.5
Baseline + Prior-FWLH 37.5 60.3 54.8 43.9 49.1 44.2 62.8 58.5 47.0 53.1
Baseline + Prior-FWFM 50.6 64.7 54.4 47.0 54.2 52.5 65.4 53.7 47.8 54.9
Baseline + Prior-FWFH 51.0 65.1 53.9 48.8 54.7 52.7 66.1 53.8 50.4 55.8

All models in this table are based on VGG-16. LM: Learnable middle-level features. LH: Learnable high-level features. FM: Fixed middle-level features. FH: Fixed
high-level features. Prior: Prior mask got by taking the maximum similarity value. Prior-A: Prior mask got by the average similarity value. Prior-P: Prior mask
generated with the mask-pooled support feature. Prior-FW: Prior mask got by the feature weighting mechanism proposed in [24].
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the accurate prior masks produced by the learnable high-
level feature for locating the target region of base classes
during training and therefore it hardly generalizes to the
previously unseen classes during inference.

Qualitative Analysis. Generated prior masks are shown in
Fig. 11. Masks of unseen classes generated by learnable
high-level feature maps (L-H) cannot reveal the potential
region-of-interest clearly while using the fixed high-level
feature maps (F-H) keeps the general integrity of the target
region. Compared to high-level features, prior masks pro-
duced by middle-level ones (L-M and F-M) are more biased
towards the background region.

To help explain the quantitative results and those in
Fig. 11, embedding visualization is shown in Fig. 12 where
1,000 samples of base classes (gray) and 1,000 samples of
novel classes (colored in green, red, purple, blue and
orange) are processed by the backbone followed by t-SNE
[37]. Based on the overlapping area between the clusters of
the base and novel classes, we draw two conclusions. First,
the middle-level features in Figs. 12a & 12c are less discrimi-
native than the high-level features as shown in Figs. 12b &
12d. Second, learnable features lose discrimination ability as
shown in (a) & (b) because embeddings of novel classes bias
towards that of the base classes, which is detrimental to the
generalization on unseen classes.

4.4.2 Discrimination Ability

In our model, the prior mask acts as a pixel-wise indicator for
each query image. As given in Eq. (3), taking the maximum

correspondence value from the pixel-wise similarity between
the query and support features indicates that there exists at
least one pixel/area in the support image that has close
semantic relation to the query pixel with a high prior value. It
is beneficial to reveal most of the potential targets on query
images. Other alternatives include using mask pooled sup-
port feature to generate the similarity mask as [24], [40], [50],
and taking the average value rather than the maximum value
from the pixel-wise similarity.

To verify the effectiveness of our design, we train two
additional models in Table 7: one with prior masks gener-
ated by averaging similarities (Prior-AFH ), and another
whose prior masks are obtained by the mask-pooled sup-
port feature (Prior-PFH). They both perform less satisfyingly
than the proposed strategy (PriorFH ).

We note the following fact. Our prior generation method
takes the maximum value from a similarity matrix of size
hw� hw to generate the prior mask of size h� w (Eq. (3)), in
contrast to Prior-P forming the mask from the similarity
matrix of size hw� 1, the difference of speed is rather small
because computational complexities of the two mask gener-
ation methods are much smaller than that of the rest of net-
work. The FPS values of PriorFH , Prior-AFH , Prior-PFH and
Prior-FWFH based on VGG-16 baseline are both around 23.1
FPS because the output features only contain 512 channels.
The FPS values of PriorFH , Prior-AFH , Prior-PFH and Prior-
FWFH based on ResNet-50 baseline whose output features
have 2,048 channels are 16.5, 16.5, 17.4 and 17.0 respectively.

4.4.3 Comparison With Other Designs

Some other methods also use the similarity mask as an inter-
mediate guidance for improving performance (e.g., [24], [40],
[50]). Their masks are obtained by the learnable mask-pooled
support and learnable query feature that is then used for fur-
ther processing the making final prediction. The strategy of
this type ofmethod is similar to Prior-PLM .

In [24], the good discrimination ability of features makes
activation high on the foreground and low elsewhere. We
follow Eqs. (3), (4), (5), and (6) in [24] to implement the fea-
ture weighting mechanism on both the query and support
features used for prior mask generation. In [24], the weight-
ing mechanism is directly applied to learnable features, and
we offer two choices in our model: the learnable middle-
and high-level features. However, it does not perform better
for Prior-FWLM and Prior-FWLH . Results of Prior-FWFH

demonstrates the effectiveness of our feature selection

Fig. 11. Visual comparison between priors generated by different sour-
ces. Prior values are normalized to 0-1, which implies the probability of
being the target region. GT: Ground truth. L-M: Learnable middle-level
features. L-H: Learnable high-level features. F-M: Fixed middle-level fea-
tures. F-H: Fixed high-level features.

Fig. 12. Visual comparison between t-SNE results of different feature sources. 1,000 features in gray color are from base classes and 1,000 features
in other colors are from novel classes. L-M: Learnable middle-level features. L-H: Learnable high-level features. F-M: Fixed middle-level features. F-
H: Fixed high-level features.
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strategy (with fixed high-level features) for prior generation.
Our feature selection strategy is complementary to the
weighting mechanism of [24].

4.4.4 Generalization on Totally Unseen Objects

Manyobjects of PASCAL-5i andCOCOhave been included in
ImageNet [28] for backbone pre-training. For those previously
unseen objects, the backbone still provides strong semantic
cues to help identify the target area in query images with the
information provided by the support images. The class
‘Person’ in PASCAL-5i is not contained in ImageNet, and the
baseline with the prior mask achieves 15.81 IoU, better than
that without the prior mask (14.38). However, the class
‘Person’ is not rare in ImageNet samples even if their labels
are not ‘Person’.

To further demonstrate our generalization ability to totally
unseen objects, we conduct experiments on the recently pro-
posed FSS-1000 [17] dataset where the foreground IoU is used
as the evaluation metric. FSS-1000 is composed of 1,000 clas-
ses, among which 486 classes are not included in any other
existing datasets [17]. We train our models with ResNet-50
backbone on the seen classes for 100 epochs with batch size 16
and initial learning rate 0.01, and then test them on the unseen
classes. The number of query-support pairs sampled for test-
ing is equal to five times the number of unseen samples.

As shown in Table 8, the baseline with the prior mask
achieves 80.8 and 81.4 foreground IoU in 1- and 5-shot evalua-
tions respectively that outperform the vanilla baseline (79.7
and 80.1) by more than 1.0 foreground IoU in both settings.
The visual illustration is given in Fig. 13 where the target
regions can still be highlighted in the priormasks even if these
objects were not witnessed by the ImageNet pre-trained
backbone.

4.5 Backbone Training

In OSLSM [29], two backbone networks are trained to
achieve few-shot segmentation. However, backbone param-
eters in recent work [40], [46] are kept to prevent overfitting.
There is no experiment to show what effect the backbone
training has. To reach a better understanding of how the
backbone affects our method, the results of four models
trained with all parameters in the backbone are shown in
the last four rows of Table 6.

The additional trainable backbone parameters cause signif-
icant performance reduction due to the overfitting of training
classes. Moreover, the backbone training nearly doubles the
training time of each batch because an additional parameter
update is required. It does not, however, affect the inference
speed. As shown in the results, the improvement that FEM
and prior mask bring to models with trainable backbones is
less significant than on those with fixed backbones. We note
that the prior masks in this section are produced by learnable
high-level features because the whole backbone is trainable.
The learnable high-level features bring worse performance to
the fixed backbone as shown in Table 7, but they are beneficial
to the trainable backbone. On 5-shot evaluation, the prior
yields higher performance gain compared to FEM, because
the prior is averaged over five support samples, providing a
more accurate prior mask than 1-shot for query images to
combat overfitting. Finally, the model with both FEM and the
prior still outperforms the baseline model, which demon-
strates the robustness of our proposed design even with all
learnable parameters.

4.6 Model Efficiency

Parameters. The parameters of our backbone network are
fixed as those in [40], [45], [46]. Four parts in the baseline
model are learnable: two 1 � 1 convolutions for reducing
dimension number of the query and support features, FEM,
one convolution block and one classification head. As
shown in Table 6, our best model (Baseline + FEM + Prior)
only has 10.8M trainable parameters that are much fewer
than other methods shown in Table 1. The prior generation
does not bring additional parameters to the model, and
FEM with spatial sizes f60; 30; 15; 8g only brings 6.3M

TABLE 8
Foreground IoU Results on Totally Unseen

Classes of FSS-1000 [17]

Methods 1-Shot 5-Shot

Baseline 79.7 80.1
Baseline + Prior 80.8 81.4

Fig. 13. Visual illustrations of prior masks for totally unseen objects in FSS-1000 dataset. Top: support images with the masked area in the target
class.Middle: query images. Bottom: prior masks of query images where the regions of interest are highlighted.
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additional learnable parameters to the baseline (4.5M !
10.8M). To prove that the improvement brought by FEM is
not due to more learnable parameters, we show results of
the model with FEMz that has more parameters (12.9M) but
it yields even worse results than FEM (10.8M).

Speed. PFENet based on ResNet-50 yields the best perfor-
mance with 15.9 and 5.1 FPS in 1- and 5-shot setting respec-
tively on an NVIDIA Titan V GPU. During evaluation, test
images are resized to 473 � 473. As shown in Table 6, FEM
does not affect the inference speed much (from 17.7 to 17.3
FPS). Though the proposed prior generation process slows
down the baseline from 17.7 to 16.5 FPS, the final model is still
efficient with 15+ FPS. Note that we include the processing
time of the last block of ResNet in these experiments for a fair
comparison.

4.7 Analysis on Result Stability

As mentioned in the implementation details, evaluating
1,000 query-support pairs on PASCAL-5i and COCO may
cause instability on results. In this section, we show the
analysis of result stability by conducting multiple experi-
ments with different support samples.

PASCAL-5i. Results in Table 9 show that the values of
standard deviation are lower than 0.5 in both 1-shot and 5-
shot setting, which shows the stability of our results on
PASCAL-5i with 1,000 pairs for evaluation.

COCO. However, 1,000 pairs are not sufficient to provide
reliable results for comparison as shown in Table 10, since
the COCO validation set contains 40,137 images and 1,000

pairs could not even cover the entire 20 test classes. Based
on this observation, we instead randomly sample 20,000
query-support pairs to evaluate our models on four folds,
and the results in Table 10 show that 20,000 pairs bring
much more stable results than 1,000 pairs.

4.8 Extension to Zero-Shot Segmentation

Zero-shot learning aims at learning a model that is robust
even when no labeled data is given. It is an extreme case of
few-shot learning. To further demonstrate the robustness of
our proposed PFENet in the extreme case, we modify our
model by replacing the pooled support features with class
label embeddings. Note that our proposed prior generation
method requires support features. Therefore the prior is not
applicable and we only verify FEM on the baseline with
VGG-16 backbone in the zero-shot setting.

Structural Change. Embeddings of Word2Vec [23] and
FastText [22] are trained on Google News [41] and Common
Crawl [22] respectively. The concatenated feature of Word2-
Vec and FastText embeddings directly replaces the pooled
support feature in the original model without normaliza-
tion. Therefore the structural change on the model structure
is the first learnable 1�1 convolution for reducing the sup-
port feature channel. Its input channel number 768 (512 +
256) in the original few-shot model (VGG-16 backbone) is
updated to 600 (300 + 300) in the zero-shot model.

Results.As shown in Table 11, our base structure achieves
53.2 class mIoU on unseen classes without support samples,
which even outperforms somemodels with five support sam-
ples on PASCAL-5i in the few-shot setting of OSLSM [29].
Also, the proposed FEM tackles the spatial inconsistency in

TABLE 9
Mean and Std. of Five Test Results (class mIoU) on PASCAL-5i

Fold - Shot 1 2 3 4 5 Mean Std.

F0 - S1 61.1 61.9 62.2 61.6 61.7 61.7 0.406
F0 - S5 63.1 63.2 63.3 63.1 63.3 63.1 0.148

F1 - S1 69.5 69.7 69.1 69.5 69.7 69.5 0.245
F1 - S5 70.7 70.8 70.9 70.6 70.5 70.7 0.158

F2 - S1 55.3 55.2 55.6 55.4 55.1 55.4 0.230
F2 - S5 55.2 56.3 55.5 55.9 56.0 55.8 0.432

F3 - S1 56.0 56.2 56.2 56.7 56.3 56.3 0.259
F3 - S5 57.9 58.1 57.9 58.0 57.6 57.9 0.187

‘Fm - Sn’ means the n-shot results of Fold-m. Each row shows five test results
with the values of mean and standard deviation (Std.).

TABLE 10
Analysis on Values of Mean and Std. of Five Test Results (Class mIoU) on COCOWith

Different Numbers of Test Query-Support Pairs (1,000 and 20,000)

Folds Pairs
1-Shot 5-Shot

Test-1 Test-2 Test-3 Test-4 Test-5 Mean Std Test-1 Test-2 Test-3 Test-4 Test-5 Mean Std

Fold-0 1,000 35.0 36.8 35.4 37.8 34.6 35.9 1.339 38.6 35.5 37.8 38.4 38.9 37.8 1.369
Fold-0 20,000 35.5 35.6 35.5 35.3 35.2 35.4 0.164 38.2 37.7 38.4 38.5 38.2 38.2 0.308

Fold-1 1,000 36.4 36.9 38.9 34.7 36.1 36.6 1.523 41.8 41.8 39.2 42.8 40.1 41.4 1.455
Fold-1 20,000 38.3 37.8 38.2 38.2 38.2 38.1 0.195 42.2 42.6 42.3 42.6 42.8 42.5 0.245

Fold-2 1,000 36.9 35.1 37.0 34.3 32.0 35.1 2.067 39.8 40.8 41.7 40.4 38.3 40.2 1.267
Fold-2 20,000 37.0 36.4 36.9 36.4 37.2 36.8 0.363 42.1 41.5 41.9 41.6 41.8 41.8 0.239

Fold-3 1,000 34.9 35.1 36.5 34.7 35.9 35.4 0.756 38.2 38.4 39.5 36.9 38.7 38.3 0.945
Fold-3 20,000 34.6 34.8 34.5 34.6 34.9 34.7 0.164 38.8 38.8 39.2 38.9 38.7 38.9 0.192

The model is based on VGG-16 [32]. 20,000 query-support pairs yield more stable results with a lower standard deviation than 1,000 query-support pairs.

TABLE 11
Experimental Results in the Zero-Shot Setting

Methods Shot Fold-0 Fold-1 Fold-2 Fold-3 Mean

OSLSM2017 [29] 5 35.9 58.1 42.7 39.1 44.0
co-FCN2018 [25] 5 37.5 50.0 44.1 33.9 41.4
SG-One2018 [50] 5 41.9 58.6 48.6 39.4 47.1
AMP2019 [31] 5 41.8 55.5 50.3 39.9 46.9

Kato et al.2019 [15] 0 39.6 52.6 41.0 35.6 42.2
Baseline 0 49.4 67.1 50.3 46.0 53.2
Baseline + FEM 0 50.0 68.5 51.7 46.6 54.2

Models shown in this table are based on VGG-16.
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the zero-shot setting and brings 1.0 points mIoU improve-
ment (from 53.2 to 54.2) to the baseline.

5 CONCLUSION

We have presented the prior guided feature enrichment net-
work with the proposed prior generationmethod and the fea-
ture enrichment module. The prior generation method boosts
the performance by leveraging the cosine-similarity calcula-
tion on pre-trained high-level features. The prior mask
encourages the model to localize the query target better with-
out losing generalization power. FEM helps solve the spatial
inconsistency by adaptively merging the query and support
features at multiple scales with intermediate supervision and
conditioned feature selection. With these modules, PFENet
achieves new state-of-the-art results on both PASCAL-5i and
COCO datasets without much model size increase and nota-
ble efficiency loss. Experiments in the zero-shot scenario fur-
ther demonstrate the robustness of our work. Possible future
work includes extending these two designs to few-shot object
detection and few-shot instance segmentation.
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