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Abstract— LiDAR point cloud panoptic segmentation, includ-
ing both semantic and instance segmentation, plays a critical
role in meticulous scene understanding for autonomous driving.
Existing 3D voxelized approaches either utilize 3D sparse con-
volution that only focuses on local scene understanding, or add
extra and time-consuming PointNet branch to capture global
feature structures. To address these limitations, we propose
an end-to-end Prototype-Voxel Contrastive Learning (PVCL)
framework for learning stable and discriminative semantic
representations, which includes voxel-level and prototype-level
contrastive learning (CL). The voxel-level CL decreases intra-
class distance and increases inter-class distance among sample
representations, while the prototype-level CL further reduces
the dependence of CL on negative sampling and avoids the
influence of outliers from the same class, enabling PVCL to be
more effective for outdoor point cloud panoptic segmentation.
Extensive experiments are conducted on the public point cloud
panoptic segmentation datasets, Semantic-KITTI and nuScenes,
where evaluations and ablation studies demonstrate PVCL
achieves superior performance compared with the state-of-the-
art. Our approach ranks the top on the public leaderboard of
Semantic-KITTI at the time of submission, and surpasses the
published 2nd rank, EfficientLPS, by 1.7% in PQ.

I. INTRODUCTION

LiDAR is one of the most important sensors for au-
tonomous driving and other types of robots. Various scene
perception tasks, such as 3D object detection [1], [2], [3],
[41, [5], [6], [7], [8], [9], [10] and semantic segmentation
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], have
been actively researched on large-scale outdoor data sets.
However, these tasks are unable to meet the more holistic
perception required by autonomous driving. Recently, Li-
DAR point cloud panoptic segmentation [21] is proposed
in holistic perception as it can combine both semantic
segmentation and instance segmentation. Especially, it can
predict both semantic labels for the points in the scene and
instance IDs for the points that belong to countable objects
such as vehicles and people. However, such task is extremely
challenging as the sparse and irregular space structure makes
it very difficult for highly fine-grained scene understanding.
Existing methods [22], [23], [24], [25], [26] can be mainly
divided into two groups: one is to project a point cloud scan
into 2D representation [22], [25]; the other is to voxelize
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Fig. 1. Illustration of Prototype-Voxel Contrastive Learning module. It in-
cludes both voxel-level and prototype-level supervised contrastive learning.

The colored circle represents the voxel and the colored diamond represents
the prototype, which is the feature centroid of each semantic class group.

the points into 3D voxels [23], [24], [26]. The projection-
based method destroys the 3D spatial structure of the point
cloud, and its post-process is quite complicated and time-
consuming. The voxel-based method has demonstrated im-
proved representation learning performance of point clouds,
however, these methods merely focus on extracting local
features and neglect the global context of the entire scene.
Several methods [12], [27] add extra PointNet [28] branches
to obtain a supplementary global feature structure, however,
they also tremendously increase the network parameters and
lower the computation efficiency. Due to the sparse and
non-uniform distribution of outdoor point clouds, clustering-
based methods for indoor 3D instance segmentation [29],
[30], [25], [23], [24] also become ineffective. Therefore,
a question is naturally raised: Is there a more effective
and efficient way of point cloud representation learning to
improve panoptic segmentation?

To address the limitations of existing works and achieve
more effective and efficient panoptic segmentation, we pro-
pose an end-to-end Prototype-Voxel Contrastive Learning
(PVCL) framework to learn more stable and discrimina-
tive semantic representations, which includes both voxel-
level and prototype-level contrastive learning (CL). It is
observed that conventional unsupervised contrastive learning
may introduce sampling bias and suffer from performance
decay because it may have negative samples from the same
class [31]. The recent work Debiased CL [31] demonstrates
both empirically and theoretically that such bias leads to
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tive samples only from truly different classes. To avoid such
bias introduced by conventional CL [32], [33], we propose
to explore the supervised voxel-level contrastive learning
(VCL) [34] to learn better representations and improve the
performance on the downstream tasks. As illustrated in
Figure. 1, VCL draws the negative samples only from the
classes that are different from the anchor and draws the
positive samples from the same class of the anchor in a
supervised learning manner. Yet compared with traditional
supervised learning, our method can learn more robust and
discriminative representations that have decreased intra-class
distance and increased inter-class distance, verified by our
empirical study. Our approach is especially beneficial to
the outdoor LiDAR point cloud scenario since it more
effectively encodes the feature correlations among multiple
global points that cannot be covered by the conventional local
convolutional operators.

According to previous study [32], [33], [35], potent CL
depends on the amount and hardness of negative samples,
and a large number of hard negative samples lead to bet-
ter performance of CL. However, it is quite difficult and
memory-consuming to select these hard negative samples.
To address this issue, we further develop the prototype-level
CL (PCL). PCL encourages each anchor to be closer to
its assigned prototype (centroid of each class in the feature
space), and farther away from different semantic prototypes,
as illustrated in Figure. 1. Since the positive/negative samples
are based on the prototype of each class in the scene,
PCL alleviates the requirement for the hard sampling of the
positive/negative pairs. Another advantage of PCL is that it
avoids the influence of outliers and noisy samples of each
semantic class and neutralizes the instability of the sampling
process, which makes our method especially more robust
to the complex outdoor LiDAR point cloud scenes. The
design of PCL benefits to learning discriminative features of
different semantic classes and avoids an excessive overlap of
different semantic classes with similar characteristics. As a
strong verification, the ablation study shows that combining
both VCL and PCL outperforms VCL or PCL alone .

To this end, we develop the Prototype-Voxel CL with bi-
level VCL and PCL. We build the PVCL module on top
of a backbone design to form a novel end-to-end panoptic
segmentation framework, as shown in Figure. 2. Such frame-
work is innovative because PVCL is embedded in the super-
vised panoptic segmentation pipeline instead of working as
a pretrain model. It efficiently constructs the feature connec-
tions among different points globally and addresses the chal-
lenge of point cloud sparsity, which essentially strengthens
the representation learning for point cloud. To verify PVCL,
we conduct extensive experiments on challenging datasets,
Semantic-KITTI [36] and nuScenes [37]. Experiments
and ablation study show PVCL significantly improves the
performance of panoptic segmentation and outperforms the
state-of-the-arts. Our method wins the 1st rank on the public
leaderboard of Semantic-KITTI at the time of submission and
surpasses EfficientLPS [22] by 1.7% in PQ, and DS-Net [24]
by 3.2% in PQ (Panoptic Quality). PVCL achieves an even

greater advantage in instance segmentation and outperforms
EfficientLPS by 6.7% in PQ'", and DS-Net by 4.7% in PQ'".
Our contributions are summarized as follows:

- We propose an end-to-end PVCL framework for point
cloud panoptic segmentation, including both voxel-
level and prototype-level CL. Such bi-level CL not
only decreases intra-class distance and increases inter-
class distance among sample representations, but also
encourages representations to be closer to their assigned
prototypes. To the best of our knowledge, it is the first
CL framework for point cloud panoptic segmentation.

- PVCL contains a novel positive/negative pair construc-
tion strategy for outdoor point cloud scenes, allowing
most points in the scene to participate in the represen-
tation learning and leading to a more stable model than
normal random sampling.

- The proposed VCL avoids the bias introduced by con-
ventional CL and considers many positives per anchor
in addition to many negatives, leading to more balanced
training and superior performance.

- The proposed PCL reduces the dependence of CL on
negative sampling, and avoids the influence of outliers
from the same class, enabling our method more effective
for outdoor point cloud panoptic segmentation.

- Extensive experiments verify PVCL significantly out-
performs the state-of-the-arts, and wins the 1st rank on
the public leaderboard of Semantic-KITTI at the time
of submission.

II. RELATED WORK

Point Cloud Panoptic Segmentation. Existing 3D panoptic
segmentation works [21], [22], [23], [24], [25], [26] were
generally similar in the overall framework, where the point-
wise or voxel-wise features are learned through a feature
extraction network and then mapped to the semantic seg-
mentation branch and instance segmentation branch to obtain
semantic class probability and coordinate offset respectively.
Panoptic RangeNet [25] utilized RangeNet;  [38] as its
backbone and proposed a range-image-based trilinear upsam-
pling module. Panoster [23] proposed a simplified framework
to incorporate a learning-based clustering solution. DS-Net
[24] adopted cylindrical convolution for strong backbone
design. EfficientLPS [22] proposed PCM convolution module
that reshapes the convolution grid to capture local contextual
information from neighboring pixels. Our PVCL outperforms
these methods as shown in the empirical study.

Contrastive Learning. Contrastive learning has triggered its
research on various tasks, achieving state-of-the-art perfor-
mance on representation learning [39], [40]. In 2D represen-
tation learning, the representative works include SimCLR [7],
MoCo [33], and ProtoNCE [41] While there are active
researches on 2D contrastive learning, much fewer works
have been done on 3D. PointContrast [35] is the first to
propose unsupervised contrastive learning for 3D repre-
sentation learning. Nevertheless, without access to labels,
dissimilar (negative) points may be from the same class of
the anchor, inducing bias to contrastive learning [31]. Apart
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Fig. 2. Detailed illustration of our PVCL panoptic segmentation framework. The upper part is the base network and the lower part is the PVCL module,
which consists of VCL and PCL. VCL constructs positive/negative pairs among anchor and samples from the same/different classes, while PCL constructs
positive/negative pairs among anchor and prototypes from the same/different classes.

from unsupervised paradigm, supervised contrastive loss [34]
was proposed to leverage label information.

III. METHODS

In this section, we first describe our base framework,
and then introduce our proposed Prototype-Voxel Contrastive
Learning approach. The PVCL module consists of two levels,
voxel-level contrastive learning (VCL) and prototype-level
contrastive learning (PCL). Additionally, a novel sampling
pair construction strategy is introduced, where the sampling
methods of anchors and positive/negative pairs are designed
for voxel-wise features.

A. Framework Overview

Similar to those 3D panoptic segmentation network frame-
works [22], [23], [24], [25], [26], our base framework is
composed of three parts: feature extraction, semantic seg-
mentation, and instance segmentation. For the feature extrac-
tion network, we refer to Cylinder3D [13], which distributes
points more evenly than the normal cubic voxel partition
and achieves higher performance. We assume that the raw
point cloud P € RN*® = (z;, ;, z),i € (0, N —1) is
voxelized as V € REXWXLxXI where Hx W x L represents
the size of cylindrical partition, I represents the number of
input features. After the feature extraction network, V' is
encoded into I € RIXWXLXD ywhere D represents the
number of features per voxel. The semantic branch bgep,
maps F into categorical probability S € RH*Wx*LxC where
C represents the number of classes. The loss function Lge,,
of bgem 18 cross-entropy between S and its ground truth.

The instance branch by, reduces voxel-wise to point-wise
feature representation, and then maps them into the point-
wise center offset 0; = (Ax;, Ay;, Az;),i € (0, Ninings)s
where Nijpings represents points belonging to things class
according to the valid mask obtained by S. A L; regression

loss function L;,,; from [29] is utilized for bger,, such loss
is invariant to the offset vector norm and ensures that the
points move towards their instance centroids.

1 .
Lo,reg = W Z HOz‘ - (Ci _pi)H s My (D
I 1 Z 0; Ci — i @)
_dir = : = tMmy
° >oimi <= Jloill2 [[(é —pi)ll2
Linst = Lo,reg + Lo,dir (3)

where m, represents the valid mask where point belongs to
things or stuff, m; = 1 if point ¢ belongs to things and m;
0 otherwise. ¢; is the centroid of object that point i belongs
to. During inference, offset-shifted coordinates ¢; = (Ax; +
i, Ay +Yi, Az +2;),1 € (0, Ninings) are clustered to
output instance labels for things points. For the semantic and
instance labels obtained by the two branches respectively, we
merge them together according to [24].

B. Prototype-Voxel Contrastive Learning

We introduce the two components of our novel Prototype-
Voxel Contrastive Learning (PVCL) module, voxel-level
contrastive learning (VCL) and prototype-level contrastive
learning (PCL). In VCL, we also propose a novel sampling
pair construction strategy for outdoor LiDAR voxel-wise
feature representation. We project the point-wise feature
vector F into the feature space F, € RFXWXLxDs through
MLP (e.g., 1 x 1 sparse convolution), where D; represents
the number of features in feature embedding space. In
the feature embedding space, our proposed PVCL module
regularizes the distances of features in voxel-to-voxel or
voxel-to-prototype in a fully supervised setting and explores
intra-class and inter-class feature structures.
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1) Voxel-level Contrastive Learning (VCL): For each an-
chor, sampled from all voxels F, we search from the other
voxels as its positive/negative pairs from the entire scene.
The searched voxels that have the same semantic label with
the anchor are used to build positive pairs, and the voxels
with different semantic labels are used to build negative
pairs. In some self-supervised contrastive learning methods,
all samples in a batch are generally used as anchors. For each
anchor, its positive pair is copied from the data augmentation,
and the rest in the batch are its negative pairs. In supervised
contrastive learning, samples with the same label as the
anchor are also included as positive pairs. This sampling
pair construction strategy requires a large batch size to meet
the strict requirements of negative pairs (many and hard) in
contrastive learning. To this end, memory banks [42], [43],
which contribute to expanding the positive/negative pairs
sampling pool, and harder sampling algorithms [43], [35]
have emerged. However, in the outdoor LiDAR point cloud
scene, the number of points/voxels in each scene is large
and multi-category, which makes memory bank subordinate.
Consequently, we propose a novel sampling pair construction
strategy to sample the anchors and positive/negative pairs,
which is explained in the next paragraph.

Compared with the normal random sampling method, we
consider the integrity of the point cloud scene. The Farthest
Point Sampling (FPS) [44] with wider coverage and less
randomness is utilized to sample anchors A for the stability
of CL. Due to the high granularity of the LiDAR point
cloud, the number of points/voxels with the same semantic
label is also sufficient, which eliminates the request to data
augment a copy for the huge point cloud scene. We randomly
sample as many positive pairs from the scene as possible. The
sampling of negative pairs is considered to be an important
role in CL. Due to the characteristics of LIDAR scanning, the
object exists overlap or occlusion with other objects. In other
words, for each anchor, the heterogeneous points around it
should be more worthy of attention. Therefore, we search the
neighbors nearest (NN) to the anchor as its negative pairs.
For all anchors, the total number of samples for positive and
negative pairs is fixed. We will demonstrate the effectiveness
of our sampling pair construction strategy in the ablation
study. A popular loss function for supervised CL takes the
following form [34]:

exp(fi - fp/To)

aEM(i) eXp(fi : fa/Tv)

“4)
where P(i) is positive pairs of A;, A,€A,|P()| is its
cardinality, M (¢) is sum of positive and negative pairs of
A;, and 7, is a hyper-parameter for VCL.

2) Prototype-level Contrastive Learning (PCL): The pro-
totype P = p;,i € C is defined as the feature center of
each semantic class in feature embedding space Fs. The
sampled anchor is encouraged to be more similar to its
own prototype p’. In the feature embedding space, the
features of different semantic classes should be distributed

Z log

peP(i)

Lyer = |A\ Z

in groups, and PCL strengthens and regularizes this inter-
class distribution. Compared with VCL, the positive pair of
PCL belongs to its own prototype and its negative pairs are
the prototypes of other classes, hence PCL avoids sampling
positive/negative pairs as before. In other words, PCL avoids
the influence of outliers and noisy samples of each semantic
class, which stabilizes the sampling process in supervised
CL. The PCL loss we proposed is as follows:

Lpcr = A Zl

€A

€xXp fl pz/Tp)
aeCeXp(fz Pa/Tp)

&)

where 7, is a hyper-parameter for PCL.

We derive the gradient descent formula to show PCL is
more stable than VCL when the gradient drops. According
to [34]:

8‘%“;011 = i Z fp <F2p > Z fn in
’ Y | peP@) neN(3) @
where Fj, is:

"= ZaeA(i) exp(fi - fa/Tv)

After the same derivation:

OLpcr _ 1 '
of, |7

zp’*l

> PP ®

neN (i)

where P, is:

b ep(fiop/m)
Y Seccelfi palm)

As shown in Eq. 6 and 8, p' (P,

©))

;v — 1) tends to be a more

stable value than Zpe P() fp ip — , which clarifies
why PVCL is more stable than VCL.

3) PVCL Joint Loss Function: After adding the PVCL
module, the entire panoptic segmentation framework of the
fully supervised setting is composed of four parts of loss,

and the overall loss function is

1
POI

Loss = Lsem + Linst + )\71 ' LVCL + )\p ' LPCL (10)

where A, represents the weight for Ly ¢, and A, represents
the weight for Lpcy,.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed methods,
we conduct extensive experiments on the large-scale outdoor
LiDAR point cloud data sets, Semantic-KITTI and nuScenes.

A. Dataset and Evaluation Metrics

The Semantic-KITTI contains 19130 scans for the training
set, 4071 scans for the validation set, 20351 scans for the
test set, and 19 classes including 8 things classes and 11
stuff classes. The nuScenes contains 28130 scans for training
set, 6019 scans for validation set, and 16 classes including
10 things classes and 6 stuff classes. We report evaluation
experiment results on test set of Semantic-KITTI and report
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Method PQ PQf RQ SQ | PQth RQth sQth | PQst RQst  SQSt | mloU
RangeNeti | [21] | 37.1 459 470 759 | 202 252 752 | 493 628 765 | 524
KPConv* [21] 445 525 544 800 | 327 387 815 | 531 659 790 | 588
LPASD [25] 380 470 482 765 | 256 318 768 | 47.1  60.1 762 | 50.9
MOPT [26] 431 507 539 788 | 286 355 804 | 536 673 717 | 526
Panoster [23] 527 599 641 807 | 494 585 833 | 551 682 788 | 599
DS-Net [24] 559 625 667 823 | 551 628 872 | 565 695 787 | 61.6
EfficientLPS [22] | 574 632 687 830 | 531 605 878 | 60.5 746 795 | 614
PCL (Ours) 580 643 685 837 | 579 646 895 | 581 714 795 | 625
VCL (Ours) 582 650 689 836 | 584 654 889 | 581 714 797 | 636
PVCL (Ours) 59.1 657 69.6 840 | 598 667 892 | 586 71.6 803 | 64.0

TABLE I. LiDAR-based panoptic segmentation results on the test set of Semantic-KITTI. All results in [%].

Method PQ PQf RQ SQ | PQth  RQth SQth | PQst RQSt  SQSt | mloU
DS-Net [24] 425 510 503 83.6 | 325 383 831 | 592 703 844 | 70.7
PCL (Ours) 639 672 712 812 | 590 723 796 | 687 813 798 | 71.7
VCL (Ours) 641 673 770 816 | 593 720 80.1 | 688 813 799 | 705
PVCL (Ours) | 649 678 779 816 | 592 725 797 | 676 791 713 | 739

TABLE II. LiDAR-based panoptic

segmentation results on the validation set of nuScenes. All results in [%].

2 9 2
2 2 = 5 = 5)
2 % f?) S g 5 § éo gﬂ %u % = © 3
4 S i} b} 2 S S £ 5 = b} = o =4 s 51 © ¢

Method |5 & £ & £ & f §|E% 2 : 2 3 2 & i : 3% %
RangeNeterr [21] 37.1 66.9 6.7 3.1 16.2 8.8 14.6 31.8 13.5 90.6  63. 413 6.7 792 712 346 374 382 32.8 47.4
KPConv* [21] 44.5 72.5 17.2 9.2 30.8 19.6 29.9 59.4 22.8 84.6 60.1 34.1 8.8 80.7 77.6 53.9 422 49.0 46.2 46.8
Panoster [23] 52.7 84.0 18.5 36.4 447 30.1 61.1 69.2 51.1 90.2 62.5 34.5 6.1 82.0 77.7 55.7 41.2 48.0 48.9 59.8
DS-Net [24] 559 91.2 28.8 454 47.2 34.6 63.6 71.1 58.5 89.1 61.2 323 4.0 83.2 79.6 58.3 434 50.0 55.2 65.3
EfficientLPS [22] 574 | 857 30.3 372 477 432 70.1 66.0 44.7 91.1 71.1 55.3 16.3 879 80.6 524 471 53.0 488 61.6
PCL (Ours) 58.0 94.1 36.5 47.7 49.5 44.0 63.6 68.9 59.0 89.9 63.3 39.7 7.2 86.0 80.1 57.9 439 52.5 53.5 64.5
VCL (Ours) 582 | 93.8 425 455 454 479 629 724 569 89.5 64.4 347 9.0 84.8 80.4 588 434 533 549 66.1
PVCL (Ours) 59.1 94.1 392 472 47.1 439 629 76,5 67.8 88.8 64.3 38.4 10.5 85.5 80.7 58.6 423 534 55.1 66.8

TABLE III. Detailed per-class PQ results on the test set of Semantic-KITTI. All results in [%].

ablation studies on validation set of both Semantic-KITTI
and nuScenes. Panoptic Quality (PQ), Segmentation Quality
(SQ), Recognition Quality (RQ) and Mean Intersection over
Union (mloU) [21] are utilized to evaluate performance of
panoptic segmentation. The above three metrics are also
calculated separately on things and stuff classes which give
PQ'™, SQt, RQ™, PQst, SQst, RQ®t. PQT uses IoU for a
stuff class and PQ, for a things class.

B. Implementation Details

Each scene is voxelized to 480 x 360 x 32 voxels under
cylindrical partition. The number of features in F' is 128
and in F is 128. The projection layer is implemented as two
1x1 3D sparse convolutional layers with Batchnormalization
and ReLU layers. This projection layer is applied during
training and removed at inference time. In the loss function,
the 7, and 7, are set as 0.07, the A, is set as 0.5, and ),
is set as 5. We use a mini-batch size of 16 on 4 NVIDIA
V-100 32GB GPUs, and use Adam as our optimizer, with an
initial learning rate of 0.002. Note that we do not use any
extra training data (e.g., EfficientLPS [22]). In PVCL, we use
our pair construction strategy to sample 512 and 128/1024
points for the anchor and positive/negative pairs respectively.
During testing, we average the semantic results with flipping
without change or extra inference step.

C. Results and Analysis

Semantic-KITTI. We compare with several strong baseline
results in order to validate the effectiveness of our PVCL

framework. These baselines are introduced in related work,
where RangeNet’ . and KPConv* are two sets of baselines
proposed by [21], namely RangeNet,, [38] + PointPil-
lars [6] and KPConv [14] + PointPillars[6], and LPASD
represents Panoptic RangeNet proposed by [25]. PCL/VCL
represents our method only with PCL/VCL module and
PVCL presents utilizing both. Table I shows that our method
wins first place in 7 out of 11 metrics and surpasses the best-
published baseline method, EfficientLPS [22], by 1.7% in PQ
and 2.6% in mloU. Especially in thing classes, our method
shows a greater improvement, 4.7% increase in PQ'" relative
to DS-Net.

nuScenes. Since nuScenes recently released the official
panoptic challenge, the evaluation method, combining se-
mantic segmentation and 3D bounding boxes for panoptic
segmentation, used by DS-Net is eliminated. As shown in
Table II, our proposed PVCL is validated on the official
panoptic challenge.

ID Anchors  Positive ~ Negative PQ RQ SQ mloU
1 Random Random Random | 56.3 664  74.0 61.6

2 FPS Random  Random | 57.1 669 749 61.7
3 Random  Random NN 575 679 778 63.3
4 FPS NN Random | 58.7 68.7 74.8 63.6
Ours FPS Random NN 593 694 785 65.8

TABLE IV. Detailed results of different pair construction strategies on the
validation set of Semantic-KITTI, where NN represents sampling nearest

points of anchors. All results in [%].
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Fig. 3.
Method Inference time PQ RQ SQ mloU
RangeNet?, | 409ms 37.1 470 759 524
KPConv* 514ms 445 544  80.0 58.8
DS-Net 721ms 559 66.7 823 61.6
Ours 405ms 59.1 69.6 84.0 64.0

TABLE V. Single scan inference time of different methods, measured
with NVIDIA V-100.

D. Ablation Study

Here we provide ablation studies on different modules and

strategies to verify the efficacy of the proposed methods.
PCL/VCL and PVCL. As shown in Table I and III,
our method with only PCL/VCL outperforms DS-Net by
2.1%/2.3% in PQ, EfficientLPS by 4.8%/5.3% in PQ'.
Compared with VCL, PCL lacks detailed voxel-to-voxel
contrast, thence that PCL declines 0.2% on PQ. Combining
with both, PVCL significantly outperforms PCL and VCL,
and it reaches the highest for 4 out of 8 things classes.
Pair construction strategy. In order to validate our effective
pair construction strategy, we randomly sample anchors and
negative pairs respectively. We reorganize the three sampling
methods of FPS, NN, and Random to verify the superiority
of our FPS and NN sampling over Random sampling. Four
comparative experiments are set to train 36k iterations on the
training set, and the results are evaluated on the validation
set, as shown in Table IV. On the Semantic-KITTI validation
set, our pair construction strategy shows superiority over
other random sampling strategies.
Computational efficiency. Nevertheless, the main motiva-
tion for our PVCL module is the maintained computational
speed, because PVCL is abandoned during inference. In
comparison to DS-Net and two-stage approaches, such as
KPConv*, PVCL achieves both better performance and faster
speed. As shown in Table V, compared with DS-Net, the
inference time of PVCL is reduced by 43.8%.

E. Results Visualization

We visualize our results on the validation set of Semantic-
KITTI (left) and nuScenes (right). Figure. 3 depicts qual-
itative comparisons of our proposed PVCL against DS-

i N s N
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Visual comparisons among Ground Truth, DS-Net, and PVCL (Ours) (from left to right) on Semantic-KITTI (left) and nuScenes (right).

Net, which is the only work released code. We cannot
compare the visualization results of EfficientLPS, because
EfficientLPS has no public released code and detailed test
set results. The focus of EfficientLPS is the feature maps
fusion of semantic branches, while our focus is on the overall
training framework. The two are not contradictory and can be
combined. The visualization shows that our method improves
point cloud perception. At the top of the left, DS-Net mixes
vegetable and trunk together, and our method distinguishes
well. Comparison of the two groups in the middle and at
the bottom of the left show the advantages of our method
in instance segmentation on Semantic-KITTI. As shown in
Table III, we demonstrate that our method achieves the best
performance in things class, and 7 out of 8 things classes
reach the first place in PQ. The truck category far exceeds the
second place by 12.2% in PQ ,the bicyclist category exceeds
by 5.5% in PQ and the motorcyclist category exceeds by
9.4% in PQ. For the truck shown in the middle of the
left, DS-Net erroneously divides it into two objects, and our
method can segment it correctly. The bicycle is shown in
the bottom of the left has segmentation errors in DS-Net,
but PVCL is able to segment correctly. As for nuScenes, our
proposed approach PVCL achieves satisfactory performance
on large objects, like truck, bus and construction vehicle.

V. CONCLUSIONS

In this paper, we tackle the problem of LiDAR point cloud
panoptic segmentation. We propose an end-to-end differen-
tiable framework based on Prototype-Voxel CL, consisting of
both VCL and PCL. To the best of our knowledge, it is the
first supervised CL framework for point cloud panoptic seg-
mentation. Extensive experiments show our method achieves
SOTA performance for point cloud panoptic segmentation.
For the future work, the recent progress of point cloud
registration method [45] has shown superior performance,
especially when the overlap between two point clouds is
small, thus inspiring us to use multiple point cloud data for
panoptic segmentation in the future.
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