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1 Detailed Network Structure

Here we detail the network structure of ICNet including three branches with
inputs of different image resolutions, i.e., low-, medium- and high resolutions.

Lowest-resolution Branch We denote the size of the full-resolution input as
H × W . Thus the input to the lowest branch is of size H/4 × W/4. It is fed
to the top branch in Fig. 1, which is an FCN-based architecture with dilated
convolution. We adopt PSPNet framework which incorporates dilated convolu-
tions with dilations set to 2 and 4 in stage4 and stage5 of ResNet respectively,
thus get downsampled feature map with size 1/8 of the input. The resulting
C × H/32 × W/32 feature map after pyramid pooling module in PSPNet is
obtained where C is the output channel size (e.g., 4096). For high efficiency
information incorporation with higher-level branches, a reduction convolution
is adopted with kernel size C ′ × 1 × 1 to reduce the channel dimension from
C to C ′, where C ′ is much smaller than C (e.g., C ′=256). The output of the
low-resolution branch is C ′ ×H/32 ×W/32.

Medium-resolution Branch For the 1/2-size input, it is processed in the
middle branch in Fig. 1. There are multiple convolution layers in this branch that
can be divided into three stages, each with downsampling rate 2 and forming the
output feature map downsampled by factor 8 as H/16 ×W/16. Compared with
the low-resolution branch, this level is important to recover details missing in
lower resolution. Thus we share weights and computation of downsampling stages
between these two branches. Taking PSPNet50 as an example, 17 convolutional
layers in the first three stages (i.e., stage1, stage2 and stage3) are shared, i.e.,
shrinking the feature map in med-branch by 2 and feeding it to the rest of top
branch. In the end, the cascade feature fusion (CFF) unit fuses this 1/16-scale
output together with the 1/32 feature map from the lower-res branch, resulting
in H/16 ×W/16 resolution output feature map.
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Fig. 1: Network architecture of ICNet. Numbers in parentheses are feature map size
ratios to the full-resolution input. Operations are highlighted in brackets. The final ×4
upsampling in the bottom branch is only used during testing.

High-resolution Branch For the full-resolution input in bottom branch of
Fig. 1, it is processed by several convolutions with downsampling rate 8, similar
to above operations. This results in a H/8 ×W/8 sized feature map. Since the
med-resolution image already restores most semantically meaningful details, it
is safe to limit the number of convolutions when processing the high-res input.
Here we use only three convolutional layers each with kernel size 3 × 3 and
stride 2 to downsize the resolution to 1/8 of the original input. Although the
resolution is high, the inference time is only 9ms from this branch. Similar to the
fusion strategy mentioned above, we fuse the output of two neighboring higher-
res branches, resulting in a H/8 × W/8 output. The 1/8 sized output in the
high-res branch is upsampled by 2 through bilinear interpolation, resulting 1/4
sized feature map. Then a per pixel convolutional classifier with 1 × 1 kernel
is utilized to get the final prediction. This prediction is trained with 1/4 sized
label guidance. And during testing, we directly upsample the 1/4 sized predicted
score map by 4 through bilinear interpolation to get the full sized prediction as
illustrated in the bottom right part of Fig. 1.

2 Other Combinations and Segmentation Backbone

ICNet can be applied to various backbones. ICNet with different feature down-
sampling factors and kernel keeping rates (e.g. 8–0.5 adopted in our paper) is
evaluated in Table 1. We have also experimented with using other segmentation
framework like DeepLabv3 [1] as ICNet backbone and the results are shown in
Table 2. In all ablated settings, ICNet can improve efficiency 5× times on average
without sacrificing much accuracy. It is thus a very general framework.
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Table 1: Performance of ICNet on PSPNet50 backbone with different combinations.

Architecture
Featrue downsampling size – Kernel keeping rate

8–1 16-1 16-0.5
Baseline sub4 sub24 sub124 Baseline sub4 sub24 sub124 Baseline sub4 sub24 sub124

mIoU (%) 71.71 66.70 70.37 71.40 70.17 61.59 69.14 70.48 67.54 59.45 65.96 66.95
Time (ms) 446 64 67 92 177 41 45 68 106 22 24 32
Frame (fps) 2.2 15.6 14.9 10.9 5.6 24.4 22.2 14.7 9.4 45.5 41.7 31.3
Speedup 1× 7.1× 6.8× 5.0× 1× 4.4× 4.0× 2.6× 1× 4.8× 4.4× 3.3×

Table 2: Performance of ICNet with segmentation framework DeepLabv3 (based on
ResNet50 without compression) as backbone architecture.

Items Baseline sub4 sub24 sub124

mIoU (%) 72.88 66.87 70.06 71.04
Time (ms) 800 80 83 107
Frame (fps) 1.3 12.5 12.0 9.3
Speedup 1× 9.6× 9.2× 7.2×

3 Detailed Time of Several Approaches

The inference mIoU and time are highly correlated. While we are not able to
normalize different approaches for variance of deep learning framework, hard-
ware platform and testing tricks. Here we list detailed information of several
approaches in Table 3 for readers as reference. We thank corresponding authors
for providing the related information. Inference speed is reported with single
network forward while accuracy of several mIoU aimed approaches may con-
tain testing tricks like multi-scale and flipping, resulting much more time. Note
that the image/feature scaling in our Caffe platform is achieved through a CPU
version of ‘Interp’ layer, which may effect the inference speed a little.

4 More Visual Results

We include more visual prediction improvements of ICNet in Fig. 2 and Fig. 3.
And show the visual comparisons of ICNet on CamVid and COCO-Stuff datasets
in Fig. 4 and Fig. 5.
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Table 3: Detailed time of several approaches.

Method DR mIoU Time (ms) Frame (fps) Platform GPU

FRRN [2] 2 71.8 469 2.1 Theano TitanX Pascal
RefineNet [3] no 73.6 2517 0.40 MatConvNet TitanX Pascal
RefineNet [3] no 73.6 1174 0.85 MxNet TitanX Pascal
DUC [4] no 80.1 879 1.14 MxNet 1080Ti
ResNet38 [5] no 80.6 1150 0.87 MxNet TitanX Pascal
PSPNet [6] no 81.2 1288 0.78 Caffe TitanX Maxwell
PSPNet [6] no 81.2 680 1.5 Caffe TitanX Pascal
PSPNet? [6] no 81.2 51.0×1e3 0.02 Caffe TitanX Maxwell
PSPNet? [6] no 81.2 26.7×1e3 0.04 Caffe TitanX Pascal

ICNet no 70.6 33 30.3 Caffe TitanX Maxwell
ICNet no 70.6 24 41.7 Caffe TitanX Pascal

(a) input image (b) diff1 (c) diff2

(d) sub4 branch (e) sub24 branch (f) sub124 branch

Fig. 2: Visual prediction improvement of ICNet.

(a) input image (b) diff1 (c) diff2

(d) sub4 branch (e) sub24 branch (f) sub124 branch

Fig. 3: Visual prediction improvement of ICNet.
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Fig. 4: Visual comparison of ICNet on CamVid dataset.

Fig. 5: Visual comparison of ICNet on COCO-Stuff dataset.
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