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Abstract. We focus on the challenging task of real-time semantic seg-
mentation in this paper. It finds many practical applications and yet is
with fundamental difficulty of reducing a large portion of computation for
pixel-wise label inference. We propose an image cascade network (ICNet)
that incorporates multi-resolution branches under proper label guidance
to address this challenge. We provide in-depth analysis of our framework
and introduce the cascade feature fusion unit to quickly achieve high-
quality segmentation. Our system yields real-time inference on a single
GPU card with decent quality results evaluated on challenging datasets
like Cityscapes, CamVid and COCO-Stuff.
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1 Introduction

Semantic image segmentation is a fundamental task in computer vision. It pre-
dicts dense labels for all pixels in the image, and is regarded as a very important
task that can help deep understanding of scene, objects, and human. Develop-
ment of recent deep convolutional neural networks (CNNs) makes remarkable
progress on semantic segmentation [1,2,3,4,5,6]. The effectiveness of these net-
works largely depends on the sophisticated model design regarding depth and
width, which has to involve many operations and parameters.

CNN-based semantic segmentation mainly exploits fully convolutional net-
works (FCNs). It is common wisdom now that increase of result accuracy almost
means more operations, especially for pixel-level prediction tasks like semantic
segmentation. To illustrate it, we show in Fig. 1(a) the accuracy and inference
time of different frameworks on Cityscapes [7] dataset.

Status of Fast Semantic Segmentation Contrary to the extraordinary de-
velopment of high-quality semantic segmentation, research along the line to make
semantic segmentation run fast while not sacrificing too much quality is left be-
hind. We note actually this line of work is similarly important since it can inspire
or enable many practical tasks in, for example, automatic driving, robotic inter-
action, online video processing, and even mobile computing where running time
becomes a critical factor to evaluate system performance.
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(a) Inference speed and mIoU (b) Time in each layer of PSPNet50

Fig. 1. (a)1: Inference speed and mIoU performance on Cityscapes [7] test set. Meth-
ods involved are PSPNet [5], ResNet38 [6], DUC [10], RefineNet [11], FRRN [12],
DeepLabv2-CRF[13], Dilation10 [14], DPN [15], FCN-8s [1], DeepLab [2], CRF-
RNN [16], SQ [9], ENet [8], SegNet [3], and our ICNet. (b): Time spent on PSPNet50
with dilation 8 for two input images. Roughly running time is proportional to the pixel
number and kernel number.

Our experiments show that high-accuracy methods of ResNet38 [6] and PSP-
Net [5] take around 1 second to predict a 1024× 2048 high-resolution image on
one Nvidia TitanX GPU card during testing. These methods fall into the area
illustrated in Fig. 1(a) with high accuracy and low speed. Recent fast semantic
segmentation methods of ENet [8] and SQ [9], contrarily, take quite different
positions in the plot. The speed is much accelerated; but accuracy drops, where
the final mIoUs are lower than 60%. These methods are located in the lower
right phase in the figure.

Our Focus and Contributions In this paper, we focus on building a prac-
tically fast semantic segmentation system with decent prediction accuracy. Our
method is the first in its kind to locate in the top-right area shown in Fig. 1(a)
and is one of the only two available real-time approaches. It achieves decent
trade-off between efficiency and accuracy.

Different from previous architectures, we make comprehensive consideration
on the two factors of speed and accuracy that are seemingly contracting. We first
make in-depth analysis of time budget in semantic segmentation frameworks and
conduct extensive experiments to demonstrate insufficiency of intuitive speedup
strategies. This motivates development of image cascade network (ICNet), a high
efficiency segmentation system with decent quality. It exploits efficiency of pro-
cessing low-resolution images and high inference quality of high-resolution ones.
The idea is to let low-resolution images go through the full semantic perception

1 Blue ones are tested with downsampled images. Inference speed is reported with sin-
gle network forward while accuracy of several mIoU aimed approaches (like PSPNet?)
may contain testing tricks like multi-scale and flipping, resulting much more time.
See supplementary material for detailed information.
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network first for a coarse prediction map. Then cascade feature fusion unit and
cascade label guidance strategy are proposed to integrate medium and high reso-
lution features, which refine the coarse semantic map gradually. We make all our
code and models publicly available2. Our main contributions and performance
statistics are the following.

– We develop a novel and unique image cascade network for real-time semantic
segmentation, it utilizes semantic information in low resolution along with
details from high-resolution images efficiently.

– The developed cascade feature fusion unit together with cascade label guid-
ance can recover and refine segmentation prediction progressively with a low
computation cost.

– Our ICNet achieves 5× speedup of inference time, and reduces memory con-
sumption by 5× times. It can run at high resolution 1024×2048 in speed of 30
fps while accomplishing high-quality results. It yields real-time inference on
various datasets including Cityscapes [7], CamVid [17] and COCO-Stuff [18].

2 Related Work

Traditional semantic segmentation methods [19] adopt handcrafted feature to
learn the representation. Recently, CNN based methods largely improve the per-
formance.

High Quality Semantic Segmentation FCN [1] is the pioneer work to re-
place the last fully-connected layers in classification with convolution layers.
DeepLab [2,13] and [14] used dilated convolution to enlarge the receptive field
for dense labeling. Encoder-decoder structures [3,4] can combine the high-level
semantic information from later layers with the spatial information from earlier
ones. Multi-scale feature ensembles are also used in [20,21,22]. In [2,15,16], condi-
tional random fields (CRF) or Markov random fields (MRF) were used to model
spatial relationship. Zhao et al. [5] used pyramid pooling to aggregate global and
local context information. Wu et al. [6] adopted a wider network to boost per-
formance. In [11], a multi-path refinement network combined multi-scale image
features. These methods are effective, but preclude real-time inference.

High Efficiency Semantic Segmentation In object detection, speed became
one important factor in system design [23,24]. Recent Yolo [25,26] and SSD [27]
are representative solutions. In contrast, high speed inference in semantic seg-
mentation is under-explored. ENet [8] and [28] are lightweight networks. These
methods greatly raise efficiency with notably sacrificed accuracy.

2 https://github.com/hszhao/ICNet

https://github.com/hszhao/ICNet
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Video Semantic Segmentation Videos contain redundant information in
frames, which can be utilized to reduce computation. Recent Clockwork [29]
reuses feature maps given stable video input. Deep feature flow [30] is based
on a small-scale optical flow network to propagate features from key frames to
others. FSO [31] performs structured prediction with dense CRF applied on op-
timized features to get temporal consistent predictions. NetWarp [32] utilizes op-
tical flow of adjacent frames to warp internal features across time space in video
sequences. We note when a good-accuracy fast image semantic-segmentation
framework comes into existence, video segmentation will also be benefited.

3 Image Cascade Network

We start by analyzing computation time budget of different components on
the high performance segmentation framework PSPNet [5] with experimental
statistics. Then we introduce the image cascade network (ICNet) as illustrated
in Fig. 2, along with the cascade feature fusion unit and cascade label guidance,
for fast semantic segmentation.

3.1 Speed Analysis

In convolution, the transformation function Φ is applied to input feature map
V ∈ Rc×h×w to obtain the output map U ∈ Rc′×h′×w′

, where c, h and w denote
features channel, height and width respectively. The transformation operation
Φ : V → U is achieved by applying c′ number of 3D kernels K ∈ Rc×k×k where
k × k (e.g, 3 × 3) is kernel spatial size. Thus the total number of operations
O(Φ) in convolution layer is c′ck2h′w′. The spatial size of the output map h′

and w′ are highly related to the input, controlled by parameter stride s as h′ =
h/s, w′ = w/s, making

O(Φ) ≈ c′ck2hw/s2. (1)

The computation complexity is associated with feature map resolution (e.g.,
h, w, s), number of kernels and network width (e.g., c, c′). Fig. 1(b) shows
the time cost of two resolution images in PSPNet50. Blue curve corresponds
to high-resolution input with size 1024 × 2048 and green curve is for image
with resolution 512 × 1024. Computation increases squarely regarding image
resolution. For either curve, feature maps in stage4 and stage5 are with the
same spatial resolution, i.e., 1/8 of the original input; but the computation in
stage5 is four times heavier than that in stage4. It is because convolutional layers
in stage5 double the number of kernels c together with input channel c′.

3.2 Network Architecture

According to above time budget analysis, we adopt intuitive speedup strategies
in experiments to be detailed in Sec. 5, including downsampling input, shrink-
ing feature maps and conducting model compression. The corresponding results
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Fig. 2. Network architecture of ICNet. ‘CFF’ stands for cascade feature fusion detailed
in Sec. 3.3. Numbers in parentheses are feature map size ratios to the full-resolution
input. Operations are highlighted in brackets. The final ×4 upsampling in the bottom
branch is only used during testing.

show that it is very difficult to keep a good balance between inference accuracy
and speed. The intuitive strategies are effective to reduce running time, while
they yield very coarse prediction maps. Directly feeding high-resolution images
into a network is unbearable in computation.

Our proposed system image cascade network (ICNet) does not simply choose
either way. Instead it takes cascade image inputs (i.e., low-, medium- and high
resolution images), adopts cascade feature fusion unit (Sec. 3.3) and is trained
with cascade label guidance (Sec. 3.4). The new architecture is illustrated in
Fig. 2. The input image with full resolution (e.g., 1024× 2048 in Cityscapes [7])
is downsampled by factors of 2 and 4, forming cascade input to medium- and
high-resolution branches.

Segmenting the high-resolution input with classical frameworks like FCN di-
rectly is time consuming. To overcome this shortcoming, we get semantic extrac-
tion using low-resolution input as shown in top branch of Fig. 2. A 1/4 sized im-
age is fed into PSPNet with downsampling rate 8, resulting in a 1/32-resolution
feature map. To get high quality segmentation, medium and high resolution
branches (middle and bottom parts in Fig. 2) help recover and refine the coarse
prediction. Though some details are missing and blurry boundaries are gener-
ated in the top branch, it already harvests most semantic parts. Thus we can
safely limit the number of parameters in both middle and bottom branches. Light
weighted CNNs (green dotted box) are adopted in higher resolution branches;
different-branch output feature maps are fused by cascade-feature-fusion unit
(Sec. 3.3) and trained with cascade label guidance (Sec. 3.4).

Although the top branch is based on a full segmentation backbone, the input
resolution is low, resulting in limited computation. Even for PSPNet with 50+
layers, inference time and memory are 18ms and 0.6GB for the large images in
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Cityscapes. Because weights and computation (in 17 layers) can be shared be-
tween low- and medium-branches, only 6ms is spent to construct the fusion map.
Bottom branch has even less layers. Although the resolution is high, inference
only takes 9ms. Details of the architecture are presented in the supplementary
file. With all these three branches, our ICNet becomes a very efficient and mem-
ory friendly architecture that can achieve good-quality segmentation.

3.3 Cascade Feature Fusion

Fig. 3. Cascade feature fusion.

To combine cascade features from different-
resolution inputs, we propose a cascade fea-
ture fusion (CFF) unit as shown in Fig. 3.
The input to this unit contains three com-
ponents: two feature maps F1 and F2 with
sizes C1 × H1 × W1 and C2 × H2 × W2 re-
spectively, and a ground-truth label with res-
olution 1×H2×W2. F2 is with doubled spatial
size of F1.

We first apply upsampling rate 2 on F1

through bilinear interpolation, yielding the
same spatial size as F2. Then a dilated con-
volution layer with kernel size C3 × 3× 3 and
dilation 2 is applied to refine the upsampled
features. The resulting feature is with size
C3×H2×W2. This dilated convolution combines feature information from sev-
eral originally neighboring pixels. Compared with deconvolution, upsampling
followed by dilated convolution only needs small kernels, to harvest the same
receptive field. To keep the same receptive field, deconvolution needs larger ker-
nel sizes than upsampling with dilated convolution (i.e., 7× 7 vs. 3× 3), which
causes more computation.

For feature F2, a projection convolution with kernel size C3×1×1 is utilized
to project F2 so that it has the same number of channels as the output of F1.
Then two batch normalization layers are used to normalize these two processed
features as shown in Fig. 3. Followed by an element-wise ‘sum’ layer and a ‘ReLU’
layer, we obtain the fused feature F ′2 as C3 ×H2 ×W2. To enhance learning of
F1, we use an auxiliary label guidance on the upsampled feature of F1.

3.4 Cascade Label Guidance

To enhance the learning procedure in each branch, we adopt a cascade label
guidance strategy. It utilizes different-scale (e.g., 1/16, 1/8, and 1/4) ground-
truth labels to guide the learning stage of low, medium and high resolution
input. Given T branches (i.e., T =3) and N categories. In branch t, the predicted
feature map F t has spatial size Yt×Xt. The value at position (n, y, x) is F t

n,y,x.
The corresponding ground truth label for 2D position (y, x) is n̂. To train ICNet,
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Fig. 4. Comparison of semantic segmentation frameworks. (a) Intermediate skip con-
nection used by FCN [1] and Hypercolumns [21]. (b) Encoder-decoder structure incor-
porated in SegNet [3], DeconvNet [4], UNet [33], ENet [8], and step-wise reconstruction
& refinement from LRR [34] and RefineNet [11]. (c) Multi-scale prediction ensemble
adopted by DeepLab-MSC [2] and PSPNet-MSC [5]. (d) Our ICNet architecture.

we append weighted softmax cross entropy loss in each branch with related loss
weight λt. Thus we minimize the loss function L defined as

L = −
T∑
t=1

λt
1

YtXt

Yt∑
y=1

Xt∑
x=1

log
eF

t
n̂,y,x∑N

n=1 e
Ft

n,y,x

. (2)

In the testing phase, the low and medium guidance operations are simply aban-
doned, where only high-resolution branch is retained. This strategy makes gradi-
ent optimization smoother for easy training. With more powerful learning ability
in each branch, the final prediction map is not dominated by any single branch.

4 Structure Comparison and Analysis

Now we illustrate the difference of ICNet from existing cascade architectures for
semantic segmentation. Typical structures in previous semantic segmentation
systems are illustrated in Fig. 4. Our proposed ICNet (Fig. 4(d)) is by nature
different from others. Previous frameworks are all with relatively intensive com-
putation given the high-resolution input. While in our cascade structure, only
the lowest-resolution input is fed into the heavy CNN with much reduced compu-
tation to get the coarse semantic prediction. The higher-res inputs are designed
to recover and refine the prediction progressively regarding blurred boundaries
and missing details. Thus they are processed by light-weighted CNNs. Newly
introduced cascade-feature-fusion unit and cascade label guidance strategy in-
tegrate medium and high resolution features to refine the coarse semantic map
gradually. In this special design, ICNet achieves high-efficiency inference with
reasonable-quality segmentation results.
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5 Experimental Evaluation

Our method is effective for high resolution images. We evaluate the architec-
ture on three challenging datasets, including urban-scene understanding dataset
Cityscapes [7] with image resolution 1024× 2048, CamVid [17] with image res-
olution 720× 960 and stuff understanding dataset COCO-Stuff [18] with image
resolution up to 640 × 640. There is a notable difference between COCO-Stuff
and object/scene segmentation datasets of VOC2012 [35] and ADE20K [36]. In
the latter two sets, most images are of low resolution (e.g., 300 × 500), which
can already be processed quickly. While in COCO-Stuff, most images are larger,
making it more difficult to achieve real-time performance.

In the following, we first show intuitive speedup strategies and their draw-
backs, then reveal our improvement with quantitative and visual analysis.

5.1 Implementation Details

We conduct experiments based on platform Caffe [37]. All experiments are on
a workstation with Maxwell TitanX GPU cards under CUDA 7.5 and CUDNN
V5. Our testing uses only one card. To measure the forward inference time, we
use the time measure tool ‘Caffe time’ and set the repeating iteration number
to 100 to eliminate accidental errors during testing. All the parameters in batch
normalization layers are merged into the neighboring front convolution layers.

For the training hyper-parameters, the mini-batch size is set to 16. The base
learning rate is 0.01 and the ‘poly’ learning rate policy is adopted with power
0.9, together with the maximum iteration number set to 30K for Cityscapes,
10K for CamVid and 30K for COCO-Stuff. Momentum is 0.9 and weight decay
is 0.0001. Data augmentation contains random mirror and rand resizing between
0.5 and 2. The auxiliary loss weights are empirically set to 0.4 for λ1 and λ2,
1 for λ3 in Eq. 2, as adopted in [5]. For evaluation, both mean of class-wise
intersection over union (mIoU) and network forward time (Time) are used.

5.2 Cityscapes

We first apply our framework to the recent urban scene understanding dataset
Cityscapes [7]. This dataset contains high-resolution 1024× 2048 images, which
make it a big challenge for fast semantic segmentation. It contains 5,000 finely
annotated images split into training, validation and testing sets with 2,975, 500,
and 1,525 images respectively. The dense annotation contains 30 common classes
of road, person, car, etc. 19 of them are used in training and testing.

Intuitive Speedup According to the time complexity shown in Eq. (1), we do
intuitive speedup in three aspects, namely downsampling input, downsampling
feature, and model compression.
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(a) input image (b) ground truth (c) colormap

(d) scale 0.25 (42ms/60.7%) (e) scale 0.5 (123ms/68.4%) (f) scale 1 (446ms/71.7%)

Fig. 5. Downsampling input: prediction of PSPNet50 on the validation set of
Cityscapes. Values in the parentheses are the inference time and mIoU.

Table 1. Left: Downsampling feature with factors 8, 16 and 32. Right: Model com-
pression with kernel keeping rates 1, 0.5 and 0.25.

Downsample Size 8 16 32

mIoU (%) 71.7 70.2 67.1
Time (ms) 446 177 131

Kernel Keeping Rates 1 0.5 0.25

mIoU (%) 71.7 67.9 59.4
Time (ms) 446 170 72

Downsampling Input Image resolution is the most critical factor that affects
running speed as analyzed in Sec. 3.1. A simple approach is to use the small-
resolution image as input. We test downsampling the image with ratios 1/2 and
1/4, and feeding the resulting images into PSPNet50. We directly upsample
prediction results to the original size. This approach empirically has several
drawbacks as illustrated in Fig. 5. With scaling ratio 0.25, although the inference
time is reduced by a large margin, the prediction map is very coarse, missing
many small but important details compared to the higher resolution prediction.
With scaling ratio 0.5, the prediction recovers more information compared to
the 0.25 case. Unfortunately, the person and traffic light far from the camera
are still missing and object boundaries are blurred. To make things worse, the
running time is still too long for a real-time system.

Downsampling Feature Besides directly downsampling the input image, another
simple choice is to scale down the feature map by a large ratio in the inference
process. FCN [1] downsampled it for 32 times and DeepLab [2] did that for
8 times. We test PSPNet50 with downsampling ratios of 1:8, 1:16 and 1:32
and show results in the left of Table 1. A smaller feature map can yield faster
inference at the cost of sacrificing prediction accuracy. The lost information is
mostly detail contained in low-level layers. Also, even with the smallest resulting
feature map under ratio 1:32, the system still takes 131ms in inference.
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Table 2. Performance of ICNet with different branches on validation set of Citysapes.
The baseline method is PSPNet50 compressed to a half. ‘sub4’, ‘sub24’ and ‘sub124’
represent predictions in low-, medium-, and high-resolution branches respectively.

Items Baseline sub4 sub24 sub124

mIoU (%) 67.9 59.6 66.5 67.7
Time (ms) 170 18 25 33
Frame (fps) 5.9 55.6 40 30.3
Speedup 1× 9.4× 6.8× 5.2×
Memory (GB) 9.2 0.6 1.1 1.6
Memory Save 1× 15.3× 8.4× 5.8×

Table 3. Effectiveness of cascade feature fusion unit (CFF) and cascade label guid-
ance (CLG). ‘DC3’, ‘DC5’ and ‘DC7’ denote replacing ‘bilinear upsampling + dilated
convolution’ with deconvolution operation with kernels 3×3, 5×5 and 7×7 respectively.

DC3 DC5 DC7 CFF CLG mIoU (%) Time (ms)

X X 66.7 31
X X 66.7 34

X X 68.0 38
X X 67.7 33
X 66.8 33

Model Compression Apart from the above two strategies, another natural way to
reduce network complexity is to trim kernels in each layer. Compressing models
becomes an active research topic in recent years due to the high demand. The
solutions [38,39,40,41] can make a complicated network reduce to a lighter one
under user-controlled accuracy reduction. We adopt recent effective classifica-
tion model compression strategy presented in [41] on our segmentation models.
For each filter, we first calculate the sum of kernel `1-norm. Then we sort these
sum results in a descending order and keep only the most significant ones. Dis-
appointingly, this strategy also does not meet our requirement given the com-
pressed models listed in the right of Table 1. Even by keeping only a quarter of
kernels, the inference time is still too long. Meanwhile the corresponding mIoU
is intolerably low – it already cannot produce reasonable segmentation for many
applications.

Cascade Branches We do ablation study on cascade branches, the results are
shown in Table 2. Our baseline is the half-compressed PSPNet50, 170ms infer-
ence time is yielded with mIoU reducing to 67.9%. They indicate that model
compression has almost no chance to achieve real-time performance under the
condition of keeping decent segmentation quality. Based on this baseline, we
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Table 4. Predicted mIoU and inference time on Cityscapes test set with image resolu-
tion 1024×2048. ‘DR’ stands for image downsampling ratio during testing (e.g, DR=4
represents testing at resolution 256×512). Methods trained using both fine and coarse
data are marked with ‘†’.

Method DR mIoU (%) Time (ms) Frame (fps)

SegNet [3] 4 57.0 60 16.7
ENet [8] 2 58.3 13 76.9
SQ [9] no 59.8 60 16.7
CRF-RNN [16] 2 62.5 700 1.4
DeepLab [2] 2 63.1 4000 0.25
FCN-8S [1] no 65.3 500 2
Dilation10 [14] no 67.1 4000 0.25
FRRN [12] 2 71.8 469 2.1
PSPNet3 [5] no 81.2 1288 0.78

ICNet no 69.5 33 30.3

ICNet† no 70.6 33 30.3

test our ICNet on different branches. To show the effectiveness of the proposed
cascade framework, we denote the outputs of low-, medium- and high-resolution
branches as ‘sub4’, ‘sub24’ and ‘sub124’, where the numbers stand for the infor-
mation used. The setting ‘sub4’ only uses the top branch with the low-resolution
input. ‘sub24’ and ‘sub124’ respectively contain top two and all three branches.

We test these three settings on the validation set of Cityscapes and list the
results in Table 2. With just the low-resolution input branch, although running
time is short, the result quality drops to 59.6%. Using two and three branches, we
increase mIoU to 66.5% and 67.7% respectively. The running time only increases
by 7ms and 8ms. Note our segmentation quality nearly stays the same as the
baseline, and yet is 5.2× times faster. The memory consumption is significantly
reduced by 5.8×.

Cascade Structure We also do ablation study on cascade feature fusion unit
and cascade label guidance. The results are shown in Table 3. Compared to
the deconvolution layer with 3 × 3 and 5 × 5 kernels, with similar inference
efficiency, cascade feature fusion unit gets higher mIoU performance. Compared
to deconvolution layer with a larger kernel with size 7×7, the mIoU performance
is close, while cascade feature fusion unit yields faster processing speed. Without
the cascade label guidance, the performance drops a lot as shown in the last row.

Methods Comparison We finally list mIoU performance and inference time
of our proposed ICNet on the test set of Cityscapes. It is trained on training and

3 Single network forward costs 1288ms (with TitanX Maxwell, 680ms for Pascal) while
mIoU aimed testing for boosting performance (81.2% mIoU) costs 51.0s.
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(a) input image (b) ground truth (c) colormap

(d) sub4 branch (e) sub24 branch (f) sub124 branch

Fig. 6. Visual prediction improvement of ICNet in each branch on Cityscapes dataset.

(a) input image (b) diff1 (c) diff2

(d) sub4 branch (e) sub24 branch (f) sub124 branch

Fig. 7. Visual prediction improvement of ICNet. White regions in ‘diff1’ and ‘diff2’
denote prediction difference between ‘sub24’ and ‘sub4’, and between ‘sub124’ and
‘sub24’ respectively.

validation sets of Cityscapes for 90K iterations. Results are included in Table 4.
The reported mIoUs and running time of other methods are shown in the official
Cityscapes leadboard. For fairness, we do not include methods without reporting
running time. Many of these methods may have adopted time-consuming multi-
scale testing for the best result quality.

Our ICNet yields mIoU 69.5%. It is even quantitatively better than several
methods that do not care about speed. It is about 10 points higher than ENet [8]
and SQ [9]. Training with both fine and coarse data boosts mIoU performance
to 70.6%. ICNet is a 30fps method on 1024× 2048 resolution images using only
one TitanX GPU card. Video example can be accessed through link4.

Visual Improvement Figs. 6 and 7 show the visual results of ICNet on
Cityscapes. With proposed gradual feature fusion steps and cascade label guid-

4 https://youtu.be/qWl9idsCuLQ

https://youtu.be/qWl9idsCuLQ
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Fig. 8. Quantitative analysis of accuracy change in connected components.

Table 5. Results on CamVid test set with
time reported on resolution 720× 960.

Method mIoU Time Frame
(%) (ms) fps

SegNet [3] 46.4 217 4.6
DPN [15] 60.1 830 1.2
DeepLab [2] 61.6 203 4.9
Dilation8 [14] 65.3 227 4.4
PSPNet50 [5] 69.1 185 5.4

ICNet 67.1 36 27.8

Table 6. Results on COCO-Stuff test set
with time reported on resolution 640×640.

Method mIoU Time Frame
(%) (ms) fps

FCN [1] 22.7 169 5.9
DeepLab [2] 26.9 124 8.1
PSPNet50 [5] 32.6 151 6.6

ICNet 29.1 28 35.7

ance structure, we produce decent prediction results. Intriguingly, output of the
‘sub4’ branch can already capture most of semantically meaningful objects. But
the prediction is coarse due to the low-resolution input. It misses a few small-size
important regions, such as poles and traffic signs.

With the help of medium-resolution information, many of these regions are
re-estimated and recovered as shown in the ‘sub24’ branch. It is noticeable that
objects far from the camera, such as a few persons, are still missing with blurry
object boundaries. The ‘sub124’ branch with full-resolution input helps refine
these details – the output of this branch is undoubted the best. It manifests that
our different-resolution information is properly made use of in this framework.

Quantitative Analysis To further understand accuracy gain in each branch,
we quantitatively analyze the predicted label maps based on connected com-
ponents. For each connected region Ri, we calculate the number of pixels it
contains, denoted as Si. Then we count the number of pixels correctly predicted
in the corresponding map as si. The predicted region accuracy pi in Ri is thus
si/Si. According to the region size Si, we project these regions onto a histogram
H with interval K and average all related region accuracy pi as the value of
current bin.

In experiments, we set bin size of the histogram as 30 and interval K as
3,000. It thus covers region size Si between 1 to 90K. We ignore regions with size



14 H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia

exceeding 90K. Fig. 8 shows the accuracy change in each bin. The blue histogram
stands for the difference between ‘sub24’ and ‘sub4’ while the green histogram
shows the difference between ‘sub124’ and ‘sub24’. For both histograms, the
large difference is mainly on the front bins with small region sizes. This manifests
that small region objects like traffic light and pole can be well improved in our
framework. The front changes are large positives, proving that ‘sub24’ can restore
much information on small objects on top of ‘sub4’. ‘sub124’ is also very useful
compared to ‘sub24’.

5.3 CamVid

CamVid [17] dataset contains images extracted from high resolution video se-
quences with resolution up to 720 × 960. For easy comparison with prior work,
we adopt the split of Sturgess et al. [42], which partitions the dataset into 367,
100, and 233 images for training, validation and testing respectively. 11 semantic
classes are used for evaluation.

The testing results are listed in Table 5, our base-model is no compressed
PSPNet50. ICNet gets much faster inference speed than other methods on this
high resolution, reaching the real-time speed of 27.8 fps, 5.7 times faster than
the second one and 5.1 times faster compared to the basic model. Apart from
high efficiency, it also accomplishes high quality segmentation. Visual results are
provided in the supplementary material.

5.4 COCO-Stuff

COCO-Stuff [18] is a recently labeled dataset based on MS-COCO [43] for stuff
segmentation in context. We evaluate ICNet following the split in [18] that 9K
images are used for training and another 1K for testing. This dataset is much
more complex for multiple categories – up to 182 classes are used for evaluation,
including 91 thing and 91 stuff classes.

Table 6 shows the testing results. ICNet still performs satisfyingly regarding
common thing and stuff understanding. It is more efficient and accurate than
modern segmentation frameworks, such as FCN and DeepLab. Compared to our
baseline model, it achieves 5.4 times speedup. Visual predictions are provided in
the supplementary material.

6 Conclusion

We have proposed a real-time semantic segmentation system ICNet. It incorpo-
rates effective strategies to accelerate network inference speed without sacrificing
much performance. The major contributions include the new framework for sav-
ing operations in multiple resolutions and the powerful fusion unit.

We believe the optimal balance of speed and accuracy makes our system
important since it can benefit many other tasks that require fast scene and object
segmentation. It greatly enhances the practicality of semantic segmentation in
other disciplines.
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