
Rapid and automatic 3D body measurement
system based on a GPU–Steger line detector
XINGJIAN LIU,1,3 HENGSHUANG ZHAO,4 GUOMIN ZHAN,1 KAI ZHONG,1 ZHONGWEI LI,1,2,*
YUHJIN CHAO,3 AND YUSHENG SHI1

1State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, China
2Research Institute of Huazhong University of Science and Technology at Shenzhen, Shenzhen, China
3Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
4Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
*Corresponding author: zwli@hust.edu.cn

Received 2 May 2016; revised 18 June 2016; accepted 18 June 2016; posted 20 June 2016 (Doc. ID 264417); published 12 July 2016

This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body.
A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the
computation cost, a GPU–Steger line detector was proposed to more rapidly detect the center of the laser pattern
and at subpixel level. The processing time of line detection is significantly shortened by the GPU–Steger line
detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and
the experimental results are presented in this paper to illustrate the performance of the proposed system.
The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin,
and clothes with rich texture. © 2016 Optical Society of America
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1. INTRODUCTION

Extracting various information from the human body plays a
significant role in many applications such as 3D printing, cus-
tomized clothing production, and ergonomics. In the past 20
years, many 3D measurement methods [1–5] have been devel-
oped to acquire high-quality 3D body surface data. Among
these 3D measurement methods, a very well investigated group
of algorithms employs one camera or multiple cameras in order
to obtain depth from matching corresponding features. Due to
typical correspondence problems that occur in the presence of
uniformly colored regions, controllable illumination called
structured light, which creates easily detectable features, is often
used for accurate and reliable matching during measurement.

Typically, the structured light methods can be classified into
two types, i.e., pattern projection [1] and triangulation laser
scanning [2]. As for pattern projection method, it is well known
for surface properties. Single or multiple coded patterns are pro-
jected onto the object, and corresponding features can be de-
termined precisely by decoding the images. Among coding
strategies, phase measurement profilometry (PMP) [6] is cred-
ited with high spatial resolution capability, and it is very popu-
lar in surface geometric dimension quality evaluation [4,7–9].
The PMP method needs fewer images than that required
in laser scanning system, and its measurement time can be

reduced to several milliseconds. But there still exist challenging
problems that need to be solved for accurate 3D measurements.
Generally the PMP method is based on the analysis of the dif-
fusion component of an active illumination, so that the results
are sensitive to the texture and reflectance of measured surfaces.
Aiming at solving these problems, many methods (including
auto-exposure time [10], modulated phase-shifting [11], dif-
fused structured light [12], micro-phase shifting [13], and
others) have been proposed. But they can only improve the
quality of the results to some extent. Currently the most pre-
vailing solution is surface coating of micro-white powders,
which will make the surface exhibit Lambertian reflectance.
However, for measuring a human body, it is impossible to spray
micro-white powder. The hair, skin, and color clothes will make
the measurements more difficult for acquiring high-quality re-
sults while they will exhibit different reflectance. For instance,
the light color surfaces have higher reflectance ratio than dark
ones. Thus, it is usually difficult to configure the measurement
system to measure surfaces with nonuniform reflectance.

As for the triangulation laser scanning method [2], single
or multiple lines are projected onto the object surface to be
measured, and they are imaged by one or two cameras. By
extracting the lines in the images, 3D shape of the lines can
be reconstructed by the optical triangulation method. As the
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laser scans across the object, the 3D shape can then be obtained
[5]. Compared with the PMP method [6], the major advantage
of the triangulation laser scanning method is that it is insensi-
tive to the color of the measured objects to some extent. Due to
this point, the triangulation laser scanning method has been
widely used in applications when surface coating of micro-
white powder is prohibited, such as industrial 3D inspection
[14] and digital protection of cultural relics [15]. Therefore,
a triangulation laser scanning method is more suitable for
3D body measurement. However, the measurement time
becomes another concern while using this method because it
is difficult for a person to keep standing motionless for a long
time. Therefore, it is valuable in improving the speed of the
measurement and calculation efficiency in applying the
triangulation laser scanning method.

For a typical triangulation laser scanning system, accurate
line center detection is the most time-consuming procedure
in realizing triangulation reconstruction. At the same time,
the detection precision dominates the reconstruction precision
once the system mechanism has been determined. Several ap-
proaches for line detection have been proposed since 1986
[16–21]. The algorithms are reviewed in detail in [22].
Among these approaches, the unbiased line detection algorithm
proposed by Steger [18,22] can achieve subpixel precision
detection and has outstanding noise robustness performance.
It corrects the bias in line position, which is often introduced
by other algorithms when the two sides of a line have different
contrast. It has been widely applied to triangulation laser scan-
ning [23–25]. However, there is a large number of convolution
and other calculations in Steger’s algorithm, which reduces
computational efficiency.

To realize rapid and automatic measurement of a 3D human
body, this paper presents a measurement system that can
acquire a 3D shape of a human body in a flexible posture.
As shown in Figs. 1 and 2, laser generators and cameras are
all fixed on two lift tables. As the lift tables go down synchro-
nously with a step of 0.5 to 2 mm, the 3D body is quickly
scanned from head to foot. At the same time, multiple laser
generators are used to project laser lines from different direc-
tions, and multiple CCD cameras capture the laser line images.

Then the line centers are detected at subpixel level, and the 3D
points are reconstructed by triangulation method. For this sys-
tem, many parameters need to be calibrated. Usually, different
calibration methods and types of the calibration targets (planar
or 3D) are conducted. To simplify the calibration procedure, a
flexible calibration method, which only needs a planar target, is
proposed. By using this planar target, all the parameters of the
system can be obtained, including the cameras’ intrinsic param-
eters, laser plane equations, scanning directions, and position
transformation relationships. A precision assessment experi-
ment verified that the measurement precision can reach within
1 mm by conducting the proposed calibration method. A
GPU–Steger line detector is implemented to accelerate the line
detection process. A hybrid parallel computing architecture is
proposed, which combines the advantages of a CPU (logical
control) and GPU (parallel mathematics operations). To fully
utilize the powerful parallel computation capability of a GPU,
we designed a 3D grid and 3D block parallel structure for cal-
culation. The experiments demonstrate that computation
speed by using a GPU (NVidia GTX TITAN X) can be over

Fig. 1. Scanning procedure of the 3D body measurement system.

Fig. 2. 3D body measurement system.
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110 times faster than that by CPU (Inter i7 3770, 3.4 GHZ).
The key technologies are introduced, and the experimental re-
sults are presented to illustrate the performance of the method.
The proposed system can be used to measure human body sur-
faces with nonuniform reflectance such as hair, skin, and
clothes with rich texture.

This paper is organized as follows. Section 2 presents the
laser vision principle and the proposed flexible calibration
method. Section 3 explains the principle of Steger algorithm
and its hybrid parallel computing architecture. Section 4 shows
experimental results, including the calibration, precision assess-
ment, the parallel computing tests and measurement to illus-
trate the performance of this system. Finally, a discussion on the
noise is given. Section 5 summarizes the paper.

2. SYSTEM PRINCIPLE AND CALIBRATION

A. Principle of Triangulation Laser Scanning
The triangulation laser scanning system mainly contains a laser
line generator and one or two cameras. In our method only one
camera is used. As shown in Fig. 3, during the measurement the
laser line generator projects a laser plane in space and forms a
distorted line on the surface of object while the camera captures
the laser line image correspondingly. Then the laser line can be
extracted. For an arbitrary point p on the line, we can find a
space line by connecting point p with the optical centerOc. The
space line intersects with the laser plane at the measured point
P. All the points on the laser line can then be reconstructed. In
this way, as the laser vision system scanning the entire object,
the profile of object can be obtained.

In this paper, a 2D image point is denoted by p � �u; v�T ,
and A 3D point is denoted by P � �X ; Y ; Z �T . We use ep to
denote the augmented vector by adding 1 as the last element:ep � �u; v; 1�T and eP � �X ; Y ; Z ; 1�T . And s is an arbitrary scale
factor. The camera is modeled by the pinhole model. The
relationship between a 3D point and its image point from a
pinhole model is given by

sep � A�R T �eP; with A �

264 f x γ u0 0

0 f y v0 0

0 0 1 0

375: (1)

Here R and T, called the extrinsic parameters, are the
rotation and translation matrices, which relate the world co-
ordinate system to the imaging coordinate system. A is called
the camera intrinsic matrix, with �u0; v0� the coordinates of
the principal point, f x and f y the scale factors in the image
u and v axes (camera focal lengths), γ the parameter describing
the skew of the two image axes.

The equation of the laser plane is ALx � BLy�
CLz � DL � 0, and the 3D point P is located in the plane.
Combining this equation with Eq. (1), one gets8>><>>:

sep �
24 f x γ u0 0

0 f y v0 0
0 0 1 0

35�R T �eP
�AL; BL; CL; DL�eP � 0

: (2)

If the image point p, the camera parameters A, the extrinsic
parameters R, T and the laser plane’s equation AL, BL, CL,
DL are known, the 3D point value P can be determined.

From the above discussion, one can get single line 3D data
from a single measurement. For a 3D object, as the laser scans
across the object, many line data are obtained and then need to
be merged together. As shown in Fig. 4, a measurement system
scans over the surface of the object with the stepD. Suppose the
coordinate at the lower position is �X L; Y L; Z L� and at the next
position the coordinate is �XU ; Y U ; ZU �. The relationship
between the two coordinates is calculated by

�XU ; Y U ; ZU � � �X L � ΔX ; Y L � ΔY ; ZL � ΔZ �; (3)

where ΔX , ΔY , ΔZ are the projected components of step D in
the camera coordinate system.

B. Flexible Calibration Method
Before implementing the triangulation laser scanning discussed
in the previous section, we need to calibrate some parameters,
including the cameras’ intrinsic parameters, laser plane equa-
tions, scanning directions, and position transformation rela-
tionships. There are different calibration methods and types
of calibration targets used to calibrate the whole system. It
is a tedious step in the process of the entire measurement im-
plementation. In order to decrease the complexity of this proc-
ess, a flexible calibration method is proposed. Compared with

Fig. 3. Principle of triangulation laser scanning. Fig. 4. Principle of data merging.
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traditional methods, which often need a 3D target, our method
only requires a flat 2D pattern as the calibration target. First, we
use the classic 2D target calibration method [26] to calibrate
the intrinsic parameters A in Eq. (1) of the four cameras.
Then we calibrate the others.

1. Laser Plane Calibration
As shown in Fig. 5, a laser line is projected onto the calibration
target and captures the scene. The points of the laser line center
can be detected by the method discussed in Section 3. These
laser line center points and the optic center Oc constitute a
plane, which is called the object plane. According to the intrin-
sic calibration results, one can calculate the equation of the
object plane:

Aox � Boy � Coz � Do � 0: (4)

The center points of the circles on the calibration target can
then be detected in subpixels. While the intrinsic parameters
are known, the value of the center points in the camera coor-
dinate can be obtained. Then the target plane equation can be
fitted from the points:

Atx � Bty � Ctz � Dt � 0: (5)

The two planes intersect, and one can get N crossing points
P11; P12;…; P1N . These points are all in the laser plane.
Then we can move the target and get another group of points.
Finally, we can obtain M groups of crossing points:

fP11; P12;…; P1N ; P21; P22;…; P2N ; PM1; PM2;…; PMN g:
Stacking the points, they can be written as a matrix
K ∈ R�M�N �×4. For a single triangulation laser scanning sys-
tem, the laser plane equation is ALx � BLy � CLz�
DL � 0. The overdetermined Eq. (6) can be obtained. The
least-squares method is used to fit the laser plane:

KH � 0 where H � �AL; BL; CL; DL�: (6)

2. Scanning Direction Calibration
After calibrating the laser plane, one needs to calibrate the scan-
ning direction equation. As Fig. 6 shows, an image of the
calibration target is taken at the lowest place. The coordinates
of the circles are obtained in the camera sensor coordinate

system. Then the lifting table moves up. After moving a dis-
tance of d , it stops and captures a second image. The lifting
table travels N positions along its way to capture the entire
object. We define xi;j as the x coordinate of jth circle on ith
target image, and Δxi as the mean value of x coordinate on
the ith target image:

Δxi �
�xi�1;1 − xi;1� � �xi�1;2 − xi;2� �…� �xi�1;K − xi;K �

K
;

Δyi �
�yi�1;1 − yi;1� � �yi�1;2 − yi;2� �…� �yi�1;K − yi;K �

K
;

Δzi �
�zi�1;1 − zi;1� � �zi�1;2 − zi;2� �…� �zi�1;K − zi;K �

K
;

(7)

where i � 1; 2;…; N − 1, and K is the number of the circles.
Assuming Δx̄ is the mean value of Δxi, then one can get the
unit increment Dx on the x coordinate and the same principal
for Dy and Dz :

Dx �
Δx̄
d

; Dy �
Δȳ
d

; Dz �
Δz̄
d

: (8)

3. Position Transformation Calibration
The position transformation between the four cameras is then
calibrated. As shown in Fig. 7, the coordinate system 1 is re-
garded as the reference coordinate system. We need to calibrate
three position relationships that are relative to the reference.
The position transformation between camera 1 and camera
2 is calibrated at first. The images of the calibration target
are captured by the two cameras correspondingly. Then the po-
sition transform (R12, T12), as shown in Eq. (9), can be esti-
mated by solving the perspective-n-point problem (PnP
problem) [27]. The rest (R23, T23, R34, T34) can be done
in the same manner:

R12

" x2
y2
z2

#
� T12 �

" x1
y1
z1

#
: (9)

Fig. 5. Calibration of laser plane.

Fig. 6. Calibration of scanning direction equation.
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3. GPU-BASED STEGER LINE DETECTOR

A. Principle of Steger Algorithm
Given the line model discussed in [22], for image of a projected
laser line, the Gaussian profile is a better fit than the parabolic
profile. Thus, the asymmetric Gaussian is chosen in our
method. A second alternative is the asymmetric Gaussian line
profile of width w and asymmetry a ∈ �0; 1�:

f g�x� �
(

e−
x2

2w2 ; x ≤ 0

a� �1 − a�e− x2

2w2 x > 0
: (10)

The idea is most easily illustrated in one dimension, as
discussed in [22]. Rather than simply checking where the
values of the derivative is zero or goes from positive to negative
between neighboring pixels, a second-order Taylor polynomial
is used to estimate the value of the “image function.” Here
we define r, r 0, r 0 0 as the functions that are obtained when
convolving with the Gauss kernel and its derivatives; the
Taylor polynomial can be obtained by p�x� � r � r 0x�
1
2
r 0 0x2. If p 0�x� � 0, one gets p 0�x� � r 0 � r 0 0x, and thus

p�x� � − r 0
r 0 0 . The subpixel location for each line point is

detected.
In two dimensions, the same idea can be applied. But

the direction of the line in each pixel cannot be gained, so
it is difficult to calculate the derivative in the direction
perpendicular to the line. As such, the Hessian matrix [28],
which contains all of the second derivatives of r with respect
to the image coordinates f �x; y�, is calculated instead:

H �x; y� �
24 ∂2g�x;y�

∂x2
∂2g�x;y�
∂x∂y

∂2g�x;y�
∂y∂x

∂2g�x;y�
∂y2

35 ⊗ f �x; y� �
�
rxx rxy
ryx ryy

�
:

(11)

Here g�x; y� is the Gaussian kernel. The direction
perpendicular to the line can be determined by finding the
eigenvectors and eigenvalues of the matrix. Given the longest
eigenvector n � �nx; ny�, the point can be obtained by inserting
t�nx; ny� into the Taylor polynomial, and setting its derivative

along t to zero. Hence, the point is given by p �
�px; py� � tn � t�nx; ny�, where

t � −
nxrx � nyry

n2x rxx � 2nxnyrxy � n2y ryy
: (12)

Again, �px; py� ∈ �− 1
2
; 1
2
� × �− 1

2
; 1
2
� is required in order for a point

to be declared a line point.

B. Hybrid Parallel Computing Architecture
As the basic principles discussed above, the most time-consum-
ing part when using the Steger algorithm to extract lines in an
image is the image 2D convolutional operation. In the Steger
algorithm, five times of 2D convolutional operations are
needed, which take up time in calculations. In our proposed
measurement system, multiple images are collected by four
cameras. In order to accelerate the calculation time consumed,
GPU implementation for 2D convolution, which processes
multiple images simultaneously, is adopted in our system.

Although a GPU is powerful for parallel computing, it can-
not take the role of a CPU. A CPU is suitable for fine calcu-
lations and logical control, while a GPU is suitable for parallel
mathematics operations. Taking these into consideration, a hy-
brid parallel computing architecture is proposed here. As shown
in Fig. 8, the convolutional kernels and images are prepared in a
CPU and transmitted to the GPU memory; then image 2D
convolution parallel computing and pixel-wise Jacobi matrix
decomposition are operated in the GPU host. Finally, the
calculated results are transmitted back to the CPU memory.

To fully utilize the power of parallel computation capability
of the GPU, a 3D grid and 3D block parallel structure for cal-
culation were designed, as illustrated in Fig. 9. Launching GPU
kernel functions cost considerable time. Thus, for the same
amount of computation, it is desirable to design a structure that
calls the GPU kernel functions less frequently. GPU threads are
organized by grid and block. Both the maximum dimensions of
grid and block are 3. Thus, in our proposed architecture, per
pixel is designed to be processed by one thread, assuming that
the 2D image’s resolution is W�H, and there are N images to
be processed at one time. Then the index of each block and
each thread can be determined. The number of threads per
processing is girdDim:x�girdDim:y�girdDim:z�blockDim:x�

blockDim:y�blockDim:z. This result should be no smaller than
N�W�H.

Fig. 7. Calibration of position relationships between the four
cameras.

Fig. 8. Hybrid parallel computing architecture.
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4. EXPERIMENTS AND DISCUSSION

As shown in Fig. 10, the performance of the proposed approach
was verified with a laser scanning system comprised of four laser
generators and four MER-125-30UM CMOS cameras with a
Pentax C1614-M lens. The CMOS cameras resolutions are

both 1292 × 964. In this system a desktop computer with a
NVidia GPU processer is used; its configurations are CPU
(Inter Core i7 3770 3.4 GHZ), GPU (NVidia GTX
TITAN X), and memory (16 GB).

A. Calibration Results and Precision Assessment
The flexible method stated in the second section is used to cal-
ibrate the parameters of the system. The calibration results are
shown in Table 1. To test the precision of our system, a stan-
dard sphere with sphere center distance of 149.12 mm, as
shown in Fig. 11, was used. The results shown in Fig. 11 in-
dicate that the measurement precision can reach within 1 mm.

B. Parallel Computing Tests
The experimental system of Fig. 10 used Microsoft Visual
Studio 2013 with managed C++, and GPU parallel computing
is implemented on the CUDA platform from NVIDIA
Corporation. In CUDA the massive paralleling threads are
organized by multiple thread blocks, the massive blocks are
organized grid, each block contains multiple threads, and
the grid contains multiple blocks. All the threads in one block
must be launched to the same stream multiprocessor (SM) in
the GPU. Each SM contains eight stream processors (SP), and
each thread can be implemented on the SP. In each SM, there
may exist multiple active blocks to hide the access delay. In
other words, more threads per block can make better use of
the GPU hardware resources. On the other hand, the clock rate
of SP is typically twice that of SM; during each SM processing
cycle, eight SP units can process 16 threads. Therefore, to sat-
isfy the merged global buffer accessing condition, the number
of threads per block should be 32 integer times. Also, the num-
ber of registers in each block is finite. So in most GPU devices,
the maximum number of threads per block is limited to 1024.
More threads per block will cause less registers per thread in the
block, thus extending the processing time per thread. Less
threads per block will cause more blocks in total, thus causing
access delay of the blocks in the grid. To properly design the
structure of GPU threads per block and blocks per grid in the
3D architecture, we test the average computation time of
line detection by using the same number of images with the
same resolutions but a different number of blocks and a

Fig. 9. 3D grid and 3D block GPU architecture.

Fig. 10. 3D body measurement system.

Table 1. System Calibration Results

Camera Parameters Focal Length (mm): f x , f y Principal Point: uo, vo Distortion Coefficients: k1, k2, g1, g2, k3
Camera 1 2235.868, 2235.772 634.303, 484.661 −0.086, 0.112, −0.0005, 0.0003, 0
Camera 2 2223.540, 2223.812 626.184, 481.005 −0.111, 0.273, 0.0011, −0.0006, 0
Camera 3 2239.214, 2239.954 642.167, 478.338 −0.097, 0.072, −0.0004, 0.0004, 0
Camera 4 2228.382, 2229.045 627.002, 461.182 −0.101, 0.224, −0.0001, −0.0006, 0

Geometry parameters Laser plane: AL, BL, CL, DL Axis parameter: Dx , Dy , Dz

System 1 −0.005, −0.873, 0.487, 283.815 −0.011, 0.886, −0.463
System 2 −0.028, −0.909, 0.414, 301.950 −0.001, 0.915, −0.402
System 3 −0.019, −0.891, 0.452, 284.949 −0.014, 0.879, −0.475
System 4 −0.006, −0.902, 0.431, 280.128 −0.018, 0.889, −0.457

Position transform R � �ϕx;ϕy;ϕz�; T � �tx;ty;tz�
System 1 & System 2 R12 � �1.699; −1.212; −1.210�; T 12 � �693.460; 362.446; 702.753�
System 2 & System 3 R23 � �1.713; −1.130; −1.146�; T 23 � �804.577; 340.372; 691.434�
System 3 & System 4 R34 � �1.609; −1.125; −1.255�; T 34 � �764.460; 305.795; 681.875�
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different number of threads per block to harvest the maximum
computation power of the GPU.

In our experiment, N, W, and H equal to 640, 1292, and
964 separately. The total number of GPU threads equals to the
total number of pixels, which is the product of N, H, and W.
Thread number also is decided by the multiplication result of
block number and threads per block. So we test different GPU
settings in the experiment (different block number and threads
per block). The results are shown in Fig. 12. The y axis is ar-
ranged by a logarithm function of the number of threads per
block on 2, that is, y � log 2 (number of threads per block).
When the number of blocks is large, the GPU resources cannot
be fully utilized, and the access delay induces more time for
calculation. On the contrary, when the number of threads
per block is large, the GPU resource for each thread will
not be sufficient. Therefore each procedure has its own optimal
block number and thread number per block according to its
computation characteristics.

In order to illustrate the performance of the GPU-based
Steger line detection method, four different objects were mea-
sured. The point clouds are shown in Fig. 13, while the image
acquisition rate is set to 30 fps, and the exposure time is set to
50 ms. As shown in Fig. 8, the whole system is a hybrid parallel

computing architecture; the CPU is responsible for image data
acquisition and result saving; the GPU is responsible for com-
putation, and the whole system is a hybrid utilization. So for
the computing part, the comparison should between the pro-
posed GPU strategy and the conventional CPU scheme alone.
The corresponding computation times are shown in Table 2.
The results indicate that the computation speed in the GPU
alone can be over 110 times faster than that in the CPU alone.

C. Measurement Results
To show the robustness to surfaces with nonuniform reflec-
tance, a man’s bust and a big Hugo’s statue were measured
(the results are shown in Fig. 14). The clothes and the hair with
rich texture can be measured. Details of the statue also can be
acquired with our method. In the experiment, the four scanned
point sets are all transformed into a global coordinate system by
applying the calibration parameters. However, there are some
misalignments caused by the mechanical vibrations and manu-
facturing errors. The ICP algorithm [29] was used to merge the
point clouds together. A box grid filter method [30] was con-
ducted to merge the registered multiple point clouds into a
complete point cloud. Points within the same box grid are
sampled to a single point, and the grid step is specified as
the average point cloud density. The merged point cloud

Fig. 11. Precision assessment of the measurement system.

Fig. 12. Average computation times with different GPU settings
(number of blocks and number of threads per block).

Fig. 13. Measured point clouds: (a) mannequin; (b) human;
(c) statue; (d) panda.

Table 2. Computation Time Using CPU and GPU Alone

Measured
Objects

Points
Number

CPU
(ms)

GPU
(ms)

Mannequin 524,946 90,735 810
Human 551,879 96,451 876
Statue 523,847 89,155 801
Panda 243,099 61,424 548
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preserves the original 3D shape and points of the measured
point clouds and also avoid the points redundancy in overlap-
ping regions.

From the measurement results in Figs. 12 and 14, it can be
concluded that arbitrary shape can be reliably measured.
However, there still exists some low-frequency ripples when
the method is applied to measure a real human body, as shown
in Figs. 13(b) and 14(a)–14(c). They are mainly caused by the
slight motion of the human body. These ripples will be even
larger when the motion is faster. Increasing the image acquiring
speed can reduce the error to some extent. Because the motion
of the human is random, it presents some challenges and will be
considered in our future research work. As for the color
information, we intend to add a color camera beside each
monochrome camera for capturing the color texture. Once
the intrinsic and extrinsic parameters of the two cameras are
calibrated, the color information can be mapped into the
3D point cloud, and this technique is mature and easy to
be implemented.

5. CONCLUSION

In this paper, a rapid and automatic 3D body measurement
system is proposed. In this method, multiple laser generators
are used to project laser lines from different directions.
Multiple CCD cameras capture the laser line images corre-
spondingly, and the 3D points are reconstructed by the triangu-
lation method. To decrease the calibration complexity of the
system, a flexible calibration method is presented, which only
needs a planar target. The precision assessment experiment
verifies that the measurement precision can reach within
1 mm by conducting the proposed calibration method.

A GPU-based Steger line detector is developed to extract the
center of the laser pattern in the subpixel level. The processing
time of the center detector is significantly shortened by the
GPU–Steger line detector. The experiments demonstrate that
computation speed by using a GPU (NVidia GTX TITAN X)
can be over 110 times faster than that by a CPU (Inter i7 3770,
3.4 GHZ). Compared with the prevailing pattern projection
methods, it can measure human body surfaces with nonuni-
form reflectance such as hair, skin, and clothes with rich
texture. In our future work, we will concentrate on decreasing
the low-frequency noises that are caused by slight motion of
the human body and the color information merging to raise
the quality of the 3D data.
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